Dans cette thèse on étudie des systèmes d’EDP non linéaires modélisant la propagation électromagnétique dans des milieux de type Kerr. On considère deux modèles. Le premier dit de Kerr-Debye, suppose un temps de réponse non nul du matériau à l’onde électromagnétique. Le second, dit de Kerr, suppose une réponse instantanée. On est ainsi confronté à des systèmes de relaxation tels que définis par Chen-Levermore-Liu (CPAM 1994). Nous établissons ici des résultats d’existence globale de solutions fortes à données petites en 3D pour le problème de Cauchy et un problème mixte. Puis nous construisons des schémas volumes finis asymptotic preserving et nous étudions leurs performances sur des cas physiques. / In this thesis, we study non-linear PDE systems modeling the electromagnetic propagation in Kerr media. We consider two models. The first one is the Kerr-Debye model, it assumes a finite response time of the medium. The second one is the Kerr model, it assumes an instantaneous response. We deal with relaxation systems as defined by Chen-Levermore-Liu (CPAM 1994). For small data, we establish results of global existence of smooth solutions in 3D for the Cauchy problem and the IBVP. Then we investigate asymptotic preserving finite volume schemes and we study their performance on physical cases.
Identifer | oai:union.ndltd.org:theses.fr/2012BOR14587 |
Date | 01 October 2012 |
Creators | Kanso, Mohamed |
Contributors | Bordeaux 1, Aregba-Driollet, Denise, Carbou, Gilles |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds