Return to search

Identification of the molecular mechanisms generating genetic instability in polyploid cells / Identification des mécanismes moléculaires générant une instabilité génétique dans les cellules polyploïdes

La polyploïdie se caractérise par une duplication du génome entier. Elle inhibe efficacement la prolifération cellulaire et joue pourtant un rôle clé dans les étapes précoces de la tumorigénèse. Comment est-elle capable de promouvoir une instabilité génétique dans les cellules cancéreuses est une question en suspens. J'ai établi un système modèle affectant la cytocinèse pour étudier les conséquences de la polyploïdie dans les cellules souches neuronales (CSN) et dans le disque imaginal de l'aile de drosophile. Les cellules polyploïdes du disque sont rapidement éliminées, les CSN polyploïdes continuent de proliférer. Les CSN polyploïdes sont caractérisées par une instabilité génétique précoce et deux facteurs en sont responsables: les erreurs mitotiques et des dommages à l'ADN. Ces dommages sont issus en partie de l'incapacité des cellules à restreindre leur progression dans le cycle cellulaire après une réplication incomplète de l'ADN. J'ai trouvé que de multiples domaines nucléaires au sein de la même CSN polyploïde pouvaient présenter une asynchronie de leur progression dans le cycle cellulaire. Les domaines nucléaires en retard dans leur progression sont les cibles des lésions à l'ADN au moment de l'entrée en mitose. Les lésions sont réduites après surexpression de Chk1, une kinase de la voie ATR de réponse aux dommages à l'ADN. De plus, la prolifération incontrôlée des CSN polyploïdes génétiquement instables est responsable de leur potentiel tumorigénique dans les essais de transplantation. Mes résultats montrent que la tolérance à la polyploïdie dépend du tissu et qu'une série d'événements contribue à l'instabilité génétique dans les CSN polyploïdes. / Polyploidy, which derives from whole-genome duplication events, is normally a potent inhibitor of cell proliferation, but plays important roles during the early steps of tumorigenesis. However, how the gain of multiple sets of chromosomes promotes the generation of unbalanced karyotypes typical of cancer cells remains to be investigated. Using a number of conditions that affect cytokinesis, I established a model system to study the consequences of polyploidy in the neural stem cells (NSCs) of Drosophila and in the wing disc (WD). Importantly, while polyploidy is rapidly eliminated from the WD, polyploid NSCs continue to proliferate. Polyploid NSCs are characterized by early-onset genetic instability and two sources account for the generation of unstable karyotypes: mitotic errors and high-levels of DNA damage. DNA damage in polyploid NSCs arises, at least in part, from the inability of polyploid cells to restrain cell cycle progression in response to incomplete DNA replication. Surprisingly, I found that multiple nuclear domains in the same polyploid NSC can exhibit asynchrony in cell cycle progression, with delayed nuclear domains experiencing acute DNA damage at mitotic entry. I show that DNA damage in polyploid NSCs can be reduced over-expressing Chk1, the main downstream kinase engaged by ATR in the DNA damage response. I also show that uncontrolled proliferation of genetically unstable polyploid NSCs holds tumorigenic potential in transplantation assays. Overall, my results show that the tolerance to polyploidy is tissue dependent and that a complex network of events contributes to the generation of unbalanced karyotypes in polyploid NSCs.

Identiferoai:union.ndltd.org:theses.fr/2017PA066263
Date27 October 2017
CreatorsNano, Maddalena
ContributorsParis 6, Basto, Renata
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds