Return to search

Inférence rétrospective de réseaux de gènes à partir de données génomiques temporelles

Les réseaux de gènes régulateurs représentent un ensemble de gènes qui interagissent, directement ou indirectement, les uns avec les autres ainsi qu'avec d'autres produits cellulaires. Comme ces interactions réglementent le taux de transcription des gènes et la production subséquente de protéines fonctionnelles, l'identification de ces réseaux peut conduire à une meilleure compréhension des systèmes biologiques complexes. Les technologies telles que les puces à ADN (microarrays) et le séquençage à ultra-haut débit (RNA sequencing) permettent une étude simultanée de l'expression des milliers de gènes chez un organisme, soit le transcriptome. En mesurant l'expression des gènes au cours du temps, il est possible d'inférer (soit "reverse-engineer") la structure des réseaux biologiques qui s'impliquent pendant un processus cellulaire particulier. Cependant, ces réseaux sont en général très compliqués et difficilement élucidés, surtout vu le grand nombre de gènes considérés et le peu de répliques biologiques disponibles dans la plupart des données expérimentales.<br /> <br /> Dans ce travail, nous proposons deux méthodes pour l'identification des réseaux de gènes régulateurs qui se servent des réseaux Bayésiens dynamiques et des modèles linéaires. Dans la première méthode, nous développons un algorithme dans un cadre bayésien pour les modèles linéaires espace-état (state-space model). Les hyperparamètres sont estimés avec une procédure bayésienne empirique et une adaptation de l'algorithme espérance-maximisation. Dans la deuxième approche, nous développons une extension d'une méthode de Approximate Bayesian Computation basé sur une procédure de Monte Carlo par chaînes de Markov pour l'inférence des réseaux biologiques. Cette méthode échantillonne des lois approximatives a posteriori des interactions gène-à-gène et fournit des informations sur l'identifiabilité et le robustesse des structures sous-réseaux. La performance des deux approches est étudié via un ensemble de simulations, et les deux sont appliqués aux données transcriptomiques.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00568663
Date01 June 2010
CreatorsRau, Andrea
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds