L’augmentation rapide de la population mondiale et des pratiques industrielles et agricoles ont exacerbé l’épuisement des nutriments essentiels pour la croissance des plantes, phosphore en particulier, étant lui-même une ressource nonrenouvelable. Après des années d’exploitation agricoles et miniers écologiquement laxistes, la société se trouve coincée entre une pénurie croissante d'éléments nutritifs et la fréquence croissante de proliférations d'algues nuisibles (HAB) causées par la lixiviation de phosphore dans les systèmes aquatiques. Toutefois, ceci présente une opportunité de développer des nouvelles technologies permettant d'éliminer, de récupérer et de réutiliser le phosphore provenant de cours d'eau pollués. L'une de ces technologies est l'adsorption nano-renforcée. Cette étude a évalué le potentiel de désorber le phosphore d'une résine échangeuse d'ions hybridée avec des nanoparticules d'oxyde de fer pour quatre solutions de régénérations différentes en utilisant une approche de plan d’expériences. Des nouvelles solutions de régénération utilisant un mélange KOH / K2SO4 et une solution alcaline de NH4OH se sont révélées comparables à la solution "témoin" de KOH et de H2SO4. Parmi les 4 méthodes de régénération étudiées, la solution de NH4OH présente le potentiel le plus élevé car il s’agit d’un déchet valorisé. Son efficacité de désorption est comparable à celle de la solution de contrôle et elle n’a démontré aucune perte de la longévité de la résine après cinq cycles d’adsorption et de désorption. Sur la base des données du plan d’expériences, une série de modèles de régression a été développée pour permettre de mieux comprendre la concentration de phosphore attendue d'un processus de régénération, en tenant compte de la chimie de régénération, du volume de traitement, de la vitesse de rinçage et de la résistance de la solution alcaline. Les solutions de post-désorption de régénération riches en nutriments semblent prometteuses pour une utilisation ultérieure. Les travaux futurs devraient inclure le développement de modèles de procédé afin de mieux comprendre les mécanismes de cette désorption. Dans l’ensemble, la technologie d’adsorption nano-améliorée offre une solution rentable et durable au problème du phosphore dans les applications de traitement des eaux usées à travers le monde. / Rapid increases in the world’s population and to-date industrial and agricultural practices have exacerbated the depletion of essential nutrients in today’s society. After years of environmentally lax agricultural and mining processes, society finds itself trapped between increasing nutrient shortage and the increased frequency of harmful algal blooms (HABs) caused by phosphorus leaching into water systems. New technologies that allow for removal and subsequent recovery and reuse of phosphorus from polluted streams is imperative. One such technology is nanoenhanced adsorption, which may allow to produce a valuable nutrient-rich solution upon desorption of the saturated media. This study evaluated the potential of four regeneration chemistries to desorb phosphorus from a commercially available ion exchange resin hybridized with iron-oxide nanoparticles using a Design of Experiments (DoE) approach. Novel regeneration solutions using a KOH/K2SO4 blend and a recovered NH4OH alkaline solution proved to be comparable to the "control" solution of KOH and H2SO4. Among the four regeneration methods studied, using the NH4OH solution shows the highest potential because: i) it is a valorized waste stream, ii) it showed a desorption efficiency comparable to the control solution, and iii) it did not demonstrate any dampening of the resin longevity after five adsorption and desorption cycles. Based on the DoE data, a series of regression models was developed to generate understanding with regard to expected phosphorus concentration from a regeneration process considering the regeneration chemistry, the treatment volume, the rinse speed, and the strength of the alkaline solution. Nutrient-rich regeneration solutions post-desorption show promising for subsequent use as hydroponic fertilizers or precursors for the P fertilizer industry. Future work should include the development of mechanistic process models to gain an even better understanding of the mechanics behind the desorption. Overall, the nano-enhanced adsorptive technology proposes a cost-effective and sustainable solution to the phosphorus problem in wastewater treatment applications across the globe.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/40140 |
Date | 10 February 2024 |
Creators | Ownby, Miles |
Contributors | Vaneeckhaute, Céline |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (ix, 80 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0018 seconds