Upon activation by the platelet-derived growth factor receptor (PDGFR), phosphatidylinositol 3'-kinase (PI3K) converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate to activate the PI3K/Akt cellular survival signalling pathway within cells. The p85 subunit of PI3K has also been shown to have GTPase activating protein (GAP) activity towards Rab proteins involved in receptor endocytosis and trafficking, specifically Rab5 and Rab4. Rab5 is responsible for regulating the fusion of vesicles containing activated receptors to traffic them to intracellular early/sorting endosomes. Rab4 is responsible for regulating the exit of receptors to a recycling pathway back to the plasma membrane. The p85 RabGAP activity is responsible for deactivating Rab5 and Rab4 function by accelerating their GTPase activity, resulting in the inactive conformation of Rab5 and Rab4, and decreased vesicle fusion events during receptor trafficking. The work in this thesis was performed to understand how p85 interacts with, and regulates, Rab5 and Rab4. Glutathione S-transferase pulldown experiments showed the p85 protein was able to interact with Rab5 through its BH domain and another unidentified domain. Cells expressing a p85-R274A mutant defective for RabGAP activity displayed increased PDGFR activation and decreased degradation. To understand the mechanism of decreased PDGFR degradation, PDGFR immunoprecipitation experiments showed the PDGFR was ubiquitinated, a signal needed for multi-vesicular body sorting. Biotinylation experiments showed the PDGFR was being more rapidly endocytosed and then sequestered within the cell. Immunofluorescence experiments showed cells expressing the p85-R274A mutant clearly altered PDGFR trafficking during receptor endocytosis. These results suggest the PDGFR was not spending longer periods of time on the cell surface to continue signalling and was not lacking the modification needed to be sorted to a degradative pathway. The defective trafficking observed in p85-R274A expressing cells, over time, may block PDGFR trafficking, which prevents normal PDGFR dephosphorylation and degradation, and could be attributed to a lack of sufficient cytosolic Rab5-GDP and Rab4-GDP required to associate with new membranes and facilitate additional vesicle fusion events. The lack of lysosomal targeting allows the receptor to be sequestered in cells, but still have the ability to signal as the receptor would not be targeted to multi-vesicular bodies where signalling is abolished.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-11172008-093707 |
Date | 26 January 2009 |
Creators | King, Jennifer C |
Contributors | Mousseau, Darrell D., Khandelwal, Ramji L., Desautels, Michel, Anderson, Deborah, Warrington, Rob C. |
Publisher | University of Saskatchewan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-11172008-093707/ |
Rights | restricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0022 seconds