Return to search

Genetic optimization of turbomachinery components using the volute of a transonic centrifugal compressor as a case study

One elementary part of a centrifugal compressor is the volute, which is located downstream the impeller. Its purpose is to collect the flow and increase the static pressure by converting kinetic energy into potential energy. Despite its significant effect onto the design point and operating range of the compressor, the number of publications regarding this component is quite small. Therefore, a numerical optimization of the volute housing is performed in order to identify important geometric parameters and find an optimal volute geometry. For this purpose, a new density-based CFD solver for all Mach numbers is developed as well as an automated geometry generation tool for the volute housing.

The results show, that a volute with an inlet eccentricity of 0.9 and a slightly lower radial volute channel offers the best compressor efficiency. Moreover, the actual cross-sectional shape of the volute has only a minor influence onto the performance. As a result, the isentropic efficiency could be improved by up to 2 % compared to the reference compressor model, in particular at high off-design flow rates. These results are a novelty in the scientific community and help to design more efficient compressors. / Das Spiralgehäuse eines Radialverdichters wird im Gegensatz zum Laufrad kaum in wissenschaftlichen Arbeiten untersucht. Um wichtige Geometrieparameter und Einflussfaktoren dieses Bauteils zu identifizieren, wird daher eine Optimierung mittels genetischer Algorithmen durchgeführt. Dazu wird zunächst ein dichte-basierter CFD-Löser entwickelt und validiert, um die komplexe Strömung in einem Radialverdichter mit hoher Genauigkeit simulieren zu können. Darauf aufbauend wird das Spiralgehäuse parametrisiert und ein Programm entwickelt, welches die komplexe Geometrie automatisiert erstellt.

Durch die neuartige Kombination von numerischer Optimierung, automatisierter Geometrieerstellung und CFD-Simulation des Spiralgehäuses können erstmals Aussagen zur optimalen Geometrie sowie über Verlusteffekte für eine Vielzahl an Geomtrievarianten
getroffen werden. Mit Hilfe dieses Wissens können sparsamere und effizientere Radialkompressoren für viele Bereiche des Maschinenbaus entwickelt werden.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:23093
Date22 November 2016
CreatorsHeinrich, Martin
ContributorsSchwarze, Rüdiger, Groß, Ulrich, TU Bergakademie Freiberg
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds