The growing demand for realistic renderings in both film and games has led to a number of proposed solutions to the Global Illumination problem. In order to imitate natural lighting, it is necessary to gather indirect illumination of the surrounding environment for lighting computations. This is a computationally expensive problem, requiring the sampling or rasterization of the hemisphere surrounding each ray intersection, to which there is no standardized solution.
In this thesis we propose a new method of approximation using environment maps for caching radiance. The proposed method leverages a voxelized scene representation for storing direct illumination and a cache of environment maps for integrating indirect illumination. By using a voxelized scene to gather indirect lighting contributions and caching these contributions spatially, we are able to achieve fast and convincing renders of large complex scenes.
The result of our implementation produces images comparable to those of existing Monte Carlo integration methods with render speeds a magnitude or more faster.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2078 |
Date | 01 June 2013 |
Creators | Buerli, Michael |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0018 seconds