Return to search

The complex morphology of radio-quiet active galactic nuclei : multi-wavelength radiative transfer and polarization

When probing the inner structures of unresolved astrophysical sources, spectropolarimetry has proven to be a solid tool, both independent and complementary to spectral and timing analyses. In this thesis, I theoretically explore the polarization of Active Galactic Nuclei (AGN), which are powered by accretion onto supermassive black holes and often reveal significant mass outflows. Their emission is strongly anisotropic and the standard model of AGN postulates that the anisotropy is caused by a confinement of the radiation in the funnel of an obscuring body of circumnuclear dust; the radiation is thus forced to escape along the funnel where it photo-ionizes conically shaped outflows. The asymmetrical configuration explains an observational dichotomy where AGN properties are characterized according to the observer's line-of-sight. However, AGN observations differ significantly from one waveband to another and the broadband validity of the unified model has to be tested by a method that gives strong constraints on the AGN morphology. In this thesis, I subsequently investigate how morphological and composition constraints on the different substructures in thermal, radio-quiet Active Galactic Nuclei can be deduced from optical, UV and X-ray polarization properties.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01001920
Date20 September 2013
CreatorsMarin, Frédéric
PublisherUniversité de Strasbourg
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0015 seconds