Return to search

STRONG FIELD MOLECULAR IONIZATION: CONTROLLED DISSOCIATION IN RADICAL CATIONS WITH DYNAMIC RESONANCES AND ADIABATICALLY PREPARED LAUNCH STATES

This dissertation investigates the electronic spectroscopy of a series of alkyl phenyl ketone radical cations and the dynamics of selective launch states in the strong field regime with tunable near infrared ultrashort laser pulses from 790 nm - 1550 nm coupled to mass spectrometric detection. Our method relies on tunable strong field laser pulses in the range from 1150 nm - 1550 nm to adiabatically ioinized gas phase molecules and prepare ions in the ground ionic state that serve as a launch state for future excitation and control. Adiabatic ionization is capable of transferring little energy to the molecule and producing a majority of a parent molecular ion in comparison to nonadiabatic ionization wherein multiple ionic states can be populated with an accompanying high degree of molecular fragmentation. We measure a dynamic resonance in the low lying electronic states of the acetopheone radical cation via preparation of a launch state with adiabatic ionization followed by a one photon transition within a single pulse duration which facilitates bond dissociation to produce the benzoyl ion. Experiments on acetophenone homologues and derivatives elucidate the structural dependence of the electronic resonance and supporting ab initio calculations identify the dynamic resonance along the molecular torsional coordinate between the ground ionic state, D0, and second excited state, D2. Post ionization excitation within the pulse duration transfers the ground state wavepacket to the D2 surface where the wavepacket encounters a three state conical intersection that facilitates the preferred bond dissociation. Time resolved photodissociation experiments measure the dynamics of the launch state, large amplitude oscillations and extended coherence times support the notion that adiabatic ionization populates a majority of the ground ionic surface. Control of the dissociation products is initiated from the launch state by varying the pump wavelength and probe intensity. Elimination of the D0 wavepacket with a 1370 nm reveals additional secondary dynamics that are attributed to wavepacket motion on the D2 surface. Finally, the effect of para substitution on the acetophenone radical cation is explored as a strategy to control the launch state wavepacket dynamics. Suppresion of the wavepacket dynamics are observed with the addition of alkoxy groups whereas extended coherence of the launch state dynamics approaching ~5 ps is observed upon trifluoromethyl substitution. A possible mechanism for the extended coherenece based on coupled torsional rotors is proposed. / Chemistry

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/2610
Date January 2015
CreatorsBohinski, Timothy Blaise
ContributorsLevis, Robert J., Matsika, Spiridoula, Borguet, Eric, Weinacht, Thomas
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format235 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/2592, Theses and Dissertations

Page generated in 0.002 seconds