A review of organic, π-electron donor molecules is given. The focus is on non- tetrathiafulvalene based systems. Polycyclic arenes, thioalkyl substituted arenes, chalcogenated fulvalenes, peri-dichalcogen bridged polycyclic arenes and heteroarenes are covered. Various π-electron donor molecules based on acenaphtho[ 1,2-b][ 1,4]-dithin have been synthesised via various methodologies. The redox properties of these molecules, as studied by cyclic voltammetry, provide evidence that these species are efficient π-electron donors. A selection of these compounds have also been studied by Electron Spin Resonance. Two ring expansion methodologies have been utilised in the synthesis of acenaphtho[l,2-b][l,4]-dithin based systems from 1,2-dithiols. Complexation of 7,12- dithia-benzo[k]fluoranthene, thus synthesised, with 2,5-dibromo-7,7,8,8-tetracyano-p- quinodimethane and iodine (I(_4) counter ion) yielded highly crystalline but poorly conducting salts.1,2-Dibromoacenaphthylene and benzo-l,2-dithiolate species have been reacted to form new 7,12-dithia-benzo[k]fluoranthene derivatives, two of which have been studied by X-ray diffraction. The versatile oligo(l,3-dithiole-2,4,5-trithione) compound has been used to generate various compounds containing the 1,4-dithiin ring including 8,9- di(methylsulfanyl)acenaphthyleno[l,2-b][l,4]dithine, which forms complexes with 7, 7,8,8-tetracyano-p-quinodimethane, 2,5-dibromo-7,7,8,8-tetracyano-p-quinodimethane and iodine (I(_7) counter ion) all three of which have been studied by X-ray diffraction. A novel 1,2,4-trithiolane has also been synthesised and characterised by X-ray diffraction.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:242656 |
Date | January 1997 |
Creators | Lay, Alexander Kit |
Publisher | Durham University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://etheses.dur.ac.uk/4725/ |
Page generated in 0.0013 seconds