Cette thèse décrit l'étude de la dégradation chimique des membranes de type acide perfluorosulfonique (PFSA) utilisées dans les piles à combustible à membrane échangeuse de protons. L'objectif de ces travaux réside d'une part en une meilleure compréhension des mécanismes de dégradation conduisant à la défaillance des membranes et en la proposition d'approches pour limiter les phénomènes de dégradation, d'autre part. Les études relatives à la dégradation chimique des membranes ont été réalisées sur une membrane de référence Nafion et sur des membranes contenant le cérium ou le manganèse incorporé par échange ionique. L'influence de la présence des pièges à radicaux Ce et Mn sur la limitation des phénomènes de dégradation des membranes a été évaluée sous deux types de conditions de vieillissement accéléré : in situ par l'abandon sous tension à vide (OCV) de la pile à combustible et ex situ par immersion de la membrane dans le réactif de fenton. La dégradation chimique de la membrane a été appréciée par mesure du taux d'émission de fluor (FER). Le taux d'émission de fluor, mesuré sur les membranes ayant subi l'un ou l'autre des vieillissements accélérés, est plus faible pour les systèmes Nafion/Ce et Nafion/Mn, préparés par échange ionique, que pour le système de référence. Ce phénomène est accompagné d'une diminution des performances de la pile à combustible, de la migration et de l'élution des ions métalliques (évaluées par MEB/EDX et HPLC) et des changements du degré d'oxydation des espèces métalliques (déterminés par XPS). Ces résultats ont été utilisés par la suite pour définir de nouvelles approches visant à limiter la dégradation chimique des membranes. Un mat à base de nanofibre CeOx/PFSA a é té préparé par electrospinning d'une dispersion d'ionomère nafion contenant des nanoparticules de CeOx préparées par flash combustion. La technique d'electrospinning permet la préparation de matériaux homogènes, d'épaisseur contrôlée et présentant une dispersion élevée de CeOx. Ce mat a été assemblé à la membrane de PFSA par pressage à chaud. L'intérêt de l'utilisation des mats de nanofibres réside dans la possibilité de positionner le piège à radical CeOx à proximité d'une couche catalytique plutôt que de le disperser au sein de la membrane. Ces nouvelles membranes ont été vieillies par abandon de la cellule de pile à combustible à l'OCV. Les résultats obtenus ont montré que les AMEs contenant une membrane de Nafion non modifiée ou un système modifié incorporant un mat de nanofibre de PFSA (sans CeOx) à l'interface membrane-electrode présentaient d'une part une chute significative de l'OCV avec le temps de fonctionnement et un FER élevé d'autre part. A l'inverse, un AME incorporant un mat de nanofibre contenant CeOx à l'interface membrane-electrode est caractérisé par un OCV stable et un FER faible. Finalement nous avons observé que le mat de nanofibre de CeOx est plus efficace lorsqu'il est placé au voisinage de l'anode. Les analyses post mortem des AMEs et les analyses de l'eau produite après fonctionnement de la pile ont été combinées afin de dresser un tableau des processus de dégradation se produisant dans les AMEs protégés par l'oxyde de cerium et dans les AMEs non modifiés. Les analyses à partir de spectroscopie photoélectronique à rayon X, de spectroscopie Raman et de microscopie électronique à balayage ont montré un niveau de dégradation des membranes plus faible pour les systèmes contenant CeOx par rapport aux membranes de référence de typer PFSA. Ces résultats sont en accords avec le profil de l'OCV et avec le taux d'émission de fluor. En conclusion l'approche consistant dans l'incorporation de pièges à radicaux pour la réduction de la dégradation chimique des membranes permet d'augmenter significativement la durée de vie de la membrane et de positionner les pièges à radicaux à proximité des sites les plus exposés aux attaques de radicaux. / This thesis describes the study the chemical degradation of perfluorosulfonic acid (PFSA) membranes used in proton exchange membrane fuel cells, in order to gain a better understanding of the mechanisms leading to failure, and to propose strategies to mitigate this degradation. Studies of membrane chemical decomposition were performed on pristine Nafion and on cerium and manganese ion exchanged membranes. The effectiveness of Mn and Ce species as free radical scavengers was studied by using accelerated stress tests: in situ in a single fuel cell under open circuit voltage (OCV), and ex situ using Fenton's reagent. Membrane chemical degradation was assessed by the fluoride emission rate (FER). Significant reduction in FER was observed with Mn and Ce ion modified Nafion. These observations were related to the fuel cell performances losses and migration or elution of metal ions, as evaluated by SEM/EDX and HPLC, and to changes in the oxidation state of the metal species, determined by XPS. The results have been used to provide further guidance on materials strategies to mitigate membrane chemical degradation. A composite nanofibre CeOx/PFSA mat was prepared by electrospinning of a mixed dispersion of Nafion® ionomer with CeOx nanoparticles synthesised by flash combustion. The electrospinning technique allows fabrication of a homogenous material with well controlled thickness and highly dispersed CeOx. This mat was assembled with PFSA membranes by hot-pressing. These nanofibre mats are the means of siting the CeOx radical scavenger specifically in close proximity to one or other catalyst layer, rather than distributed throughout the membrane. The new membranes were further investigated by OCV hold testing in a fuel cell. The results show that MEAs integrating a non-modified PFSA membrane, or a PFSA membrane modified by an interlayer of nanofibre PFSA (no CeOx) only, demonstrate a marked drop in OCV with time, and high FER. In contrast an MEA comprising a CeOx nanofibre interlayer gives very stable open circuit voltage and low fluoride emission. Finally it was observed that the nanofibre – ceria interlayer is more effective when incorporated at the anode side. Post mortem analysis of the MEAs and analysis of exhaust water were combined to draw a picture of the overall degradation processes occurring in cerium oxide protected and non-modified MEAs. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy analyses of aged MEAs indicated a lower degree of degradation for CeOx protected membranes than for a non-modified PFSA membrane. These results are in agreement with OCV profile and fluoride emission rate. In conclusion this new approach to the strategy of incorporating of radical scavengers to mitigate membrane chemical degradation efficiently increases membrane durability, and allows location of the radical scavenger within the MEA at the sites potentially most exposed to radical attack.
Identifer | oai:union.ndltd.org:theses.fr/2014MON20197 |
Date | 09 December 2014 |
Creators | Zaton, Marta |
Contributors | Montpellier 2, Rozière, Jacques, Jones, Deborah Jacqueline |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds