The objective of the proposed research is to develop solutions for High-Performance Low-Cost Passives for Radar, Identification, and Communication Applications up to mm-Wave Frequencies. This research will bring to the table potential solutions that will meet three main requirements: small size (or low weight), high performance, and low cost. This research embarks on antenna design and development for passive RFID tags on LCP substrates, and then a transition towards lower cost modules investigates and explores the possibilities of using paper as RF substrates with inkjet printing as a low cost fabrication technology. Modules such as dual band antenna for Wifi frequencies (2.4 GHz and 5 GHz) and UWB (up to 10GHz) on paper substrate using inkjet printing are presented. This work then bridges into developing higher frequency modules. These include: highly selective filter design on LCP for X-band Radar application to be used as a benchmark for an easy adjustment for higher frequencies, and antenna modules LCP using inkjet printing for communication such as mm-Wave WLAN or WPAN.
A transition into mm-Wave Modules then takes place for the general realization of low-cost high-performance mm-Wave modules and more specifically the low cost automotive radar. After proposing an architecture for integrated mm-Wave module, this work then investigates 2D/3D interconnections (and their integration with antennas) on LCP using conventional etching design guidelines up to 100GHz. Antenna arrays that are implemented with phase shifters for beam steering are then designed using edge fed and multilayer technology. Furthermore, crosstalk reductions for highly dense transmission lines are analyzed via simulations for the optimum performance and space saving of such mm-Wave modules such as the IC interface where space restrictions are strictly enforced.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/39552 |
Date | 04 April 2011 |
Creators | Rida, Amin Hassan |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0018 seconds