<p>Dosimetric characteristics of a CVD single crystal diamond detector have been evaluated. Detector stability, linearity, optimal bias, temperature dependence, directional dependence, priming and pre-irradiation behaviour, depth dose curves and dose profiles were investigated.</p><p>The optimal bias was determined to be 50 V. The detector stability measurement showed a too large variation for absolute dosimetry in a day to day measurement, but acceptable variation during one and the same day. The linearity constant, , in the relation between signal and dose rate, (Fowler 1966), was determined to 0.978 and 0.953 for two detectors. The sub-linearity was also observed in the depth dose curves and could be eliminated with a correction method. The diamond detector showed smaller temperature dependence than the EFD silicon diode. The directional dependency was, <1 %, up to at least ± 15˚ and therefore no angular correction is needed. A priming dose of 0.6 Gy was determined, which is considerably smaller than for existing detectors on the market. After pre-irradiation with electrons (8 and 18 MeV) a large and permanent desensitization of up to 31 % / 500 Gy was detected. This is in contradiction to what previous published articles claim. 15 MV photons also reduced the sensitivity of the detector, but no evidence that 5 MV photons do has been found. A 50 Gy dose of 180 MeV protons did not reduce the sensitivity either. The detector dose rate linearity was improved by electron pre-irradiation. The dose profile penumbras of the diamond detector were, for the most part, smaller than the RK ionization chamber, indicating a better spatial resolution.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:su-8321 |
Date | January 2008 |
Creators | Ärlebrand, Anna |
Publisher | Stockholm University, Medical Radiation Physics (together with KI) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0019 seconds