Return to search

Mapping mixed and fragmented forest associations with high spatial resolution satellite imagery : capabilities and caveats

Satellite imagery such as Landsat has been in use for decades for many landscape and regional scale mapping applications, but has been too coarse for use in detailed forest inventories where stand level structural and compositional information is desired. Recently available high spatial resolution satellite imagery may be well suited to mapping fine-scale components of ecosystems, however, this remains an area of ongoing research.
The first goal of this thesis was to assess the capacity of high spatial resolution satellite imagery to detect the variability in late seral coastal temperate rainforests in British Columbia, Canada. Using an object-based classifier, two hierarchical classification schemes are evaluated: a broad classification based on structural (successional) stage and a finer classification of late seral vegetation associations. The finer-scale classification also incorporates ancillary landscape positional variables (elevation and potential soil moisture) derived from Light Detection and Ranging (LiDAR) data, and the relative contribution of spectral, textural and landscape positional data for this classification is determined. Results indicate that late seral forests can be well distinguished from younger forests using QuickBird spectral and textural data. However, discrimination among late seral forest associations is challenging, especially in the absence of landscape positional variables.
Classification accuracies were particularly low for rare forest associations. Given this finding, the objective of the third chapter was to explicitly examine the caveats of using high spatial resolution imagery to map rare classes. Classification accuracy is assessed in several different ways in order to examine the impact on perceived map accuracy. In addition, the effects on habitat extent and configuration resulting from post-classification implementation of a minimum mapping unit are examined. Results indicate that classification accuracies may vary considerably depending on the assessment technique used. Specifically, ignoring the presence of fine-scale heterogeneity in a classification during accuracy assessment falsely lowered the accuracy estimates. Further, post-classification smoothing had a large effect on the spatial pattern of rare classes. These findings suggest that routinely used image classification and assessment techniques can greatly impact mapping of rare classes. / Forestry, Faculty of / Graduate

  1. http://hdl.handle.net/2429/746
Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/746
Date05 1900
CreatorsThompson, Shanley Dawn
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
Format1262083 bytes, application/pdf
RightsAttribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0018 seconds