This study uses a 3D finite element program, calibrated with the results of a full scale instrumented load test on a limited size footing, to estimate the settlement improvement factor for footings resting on rammed aggregate pier groups. A simplified 3D finite element model (Composite Soil Model) was developed, which takes into account the increase of stiffness around the piers during the ramming process.
Design charts for settlement improvement factors of square footings of different sizes (B = 2.4m to 4.8m) resting on aggregate pier groups of different area ratios (AR = 0.087 to 0.349), pier moduli (Ecolumn = 36MPa to 72MPa), and with various compressible clay layer strengths (cu = 20kPa to 60kPa) and thicknesses (L = 5m to 15m) were prepared using this calibrated 3D finite element model.
It was found that, the settlement improvement factor increases as the area ratio, pier modulus and footing pressure increase. On the other hand, the settlement improvement factor is observed to decrease as the undrained shear strength and thickness of compressible clay and footing size increase.
After using the model to study the behaviour of floating piers, it was concluded that, the advantage of using end bearing piers instead of floating piers for reducing settlements increases as the area ratio of piers increases, the elasticity modulus value of the piers increases, the thickness of the compressible clay layer decreases and the undrained shear strength of the compressible clay decreases.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12609733/index.pdf |
Date | 01 August 2008 |
Creators | Kuruoglu, Ozgur |
Contributors | Erol, Orhan |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | Ph.D. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0023 seconds