This thesis investigates a gesture segmentation and recognition scheme that employs a random forest classification model. A complete gesture recognition system should localize and classify each gesture from a given gesture vocabulary, within a continuous video stream. Thus, the system must determine the start and end points of each gesture in time, as well as accurately recognize the class label of each gesture. We propose a unified approach that performs the tasks of temporal segmentation and classification simultaneously. Our method trains a random forest classification model to recognize gestures from a given vocabulary, as presented in a training dataset of video plus 3D body joint locations, as well as out-of-vocabulary (non-gesture) instances. Given an input video stream, our trained model is applied to candidate gestures using sliding windows at multiple temporal scales. The class label with the highest classifier confidence is selected, and its corresponding scale is used to determine the segmentation boundaries in time. We evaluated our formulation in segmenting and recognizing gestures from two different benchmark datasets: the NATOPS dataset of 9,600 gesture instances from a vocabulary of 24 aircraft handling signals, and the CHALEARN dataset of 7,754 gesture instances from a vocabulary of 20 Italian communication gestures. The performance of our method compares favorably with state-of-the-art methods that employ Hidden Markov Models or Hidden Conditional Random Fields on the NATOPS dataset. We conclude with a discussion of the advantages of using our model.
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/15405 |
Date | 12 March 2016 |
Creators | Joshi, Ajjen Das |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0017 seconds