Background: Autism Spectrum Disorder (ASD) is a complex neurodevelopmen-tal disorder that affects social communication, behavior, and cognitive development.Patients with autism have a variety of difficulties, such as sensory impairments, at-tention issues, learning disabilities, mental health issues like anxiety and depression,as well as motor and learning issues. The World Health Organization (WHO) es-timates that one in 100 children have ASD. Although ASD cannot be completelytreated, early identification of its symptoms might lessen its impact. Early identifi-cation of ASD can significantly improve the outcome of interventions and therapies.So, it is important to identify the disorder early. Machine learning algorithms canhelp in predicting ASD. In this thesis, Support Vector Machine (SVM) and RandomForest (RF) are the algorithms used to predict ASD. Objectives: The main objective of this thesis is to build and train the models usingmachine learning(ML) algorithms with the default parameters and with the hyper-parameter tuning and find out the most accurate model based on the comparison oftwo experiments to predict whether a person is suffering from ASD or not. Methods: Experimentation is the method chosen to answer the research questions.Experimentation helped in finding out the most accurate model to predict ASD. Ex-perimentation is followed by data preparation with splitting of data and by applyingfeature selection to the dataset. After the experimentation followed by two exper-iments, the models were trained to find the performance metrics with the defaultparameters, and the models were trained to find the performance with the hyper-parameter tuning. Based on the comparison, the most accurate model was appliedto predict ASD. Results: In this thesis, we have chosen two algorithms SVM and RF algorithms totrain the models. Upon experimentation and training of the models using algorithmswith hyperparameter tuning. SVM obtained the highest accuracy score and f1 scoresfor test data are 96% and 97% compared to other model RF which helps in predictingASD. Conclusions: The models were trained using two ML algorithms SVM and RF andconducted two experiments, in experiment-1 the models were trained using defaultparameters and obtained accuracy, f1 scores for the test data, and in experiment-2the models were trained using hyper-parameter tuning and obtained the performancemetrics such as accuracy and f1 score for the test data. By comparing the perfor-mance metrics, we came to the conclusion that SVM is the most accurate algorithmfor predicting ASD.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-25796 |
Date | January 2023 |
Creators | Aravapalli, Naga Sai Gayathri, Palegar, Manoj Kumar |
Publisher | Blekinge Tekniska Högskola, Institutionen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0037 seconds