In this paper we conduct an out-of-sample forecasting exercise for monthly Swedish air traveler volumes. The models considered are multiplicative seasonal ARIMA, Neural network autoregression, Exponential smoothing, the Prophet model and a Random Walk as a benchmark model. We divide the out-of-sample data into three different evaluation periods: Pre-COVID-19, during COVID-19 and Post-COVID-19 for which we calculate the MAE, MAPE and RMSE for each model in each of these evaluation periods. The results show that for the Pre-COVID-19 period all models produce accurate forecasts, in comparison to the Random Walk model. For the period during COVID-19, no model outperforms the Random Walk, with only Exponential smoothing performing as well as the Random Walk. For the period Post-COVID-19, the best performing models are Random Walk, SARIMA and Exponential smoothing, with all aforementioned models having similar performance.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-503683 |
Date | January 2023 |
Creators | Becker, Mark, Jarvis, Peter |
Publisher | Uppsala universitet, Statistiska institutionen |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds