What is the probability that in a fair coin toss game (a simple random walk) we go bankrupt in n steps when there is an initial lead of some known or unknown quantity $m? What is the distribution of the number of steps N that it takes for the lead to vanish? This thesis explores some of the features of this first passage to the origin (FPO) distribution. First, we explore the distribution of N when m is known. Next, we compute the maximum likelihood estimators of m for a fixed n and also the posterior distribution of m when we are given that m follows some known prior distribution.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5216 |
Date | 01 May 2020 |
Creators | Soni, Aradhana |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0014 seconds