Return to search

Secure and Reliable Data Outsourcing in Cloud Computing

"The many advantages of cloud computing are increasingly attracting individuals and organizations to outsource their data from local to remote cloud servers. In addition to cloud infrastructure and platform providers, such as Amazon, Google, and Microsoft, more and more cloud application providers are emerging which are dedicated to offering more accessible and user friendly data storage services to cloud customers. It is a clear trend that cloud data outsourcing is becoming a pervasive service. Along with the widespread enthusiasm on cloud computing, however, concerns on data security with cloud data storage are arising in terms of reliability and privacy which raise as the primary obstacles to the adoption of the cloud. To address these challenging issues, this dissertation explores the problem of secure and reliable data outsourcing in cloud computing. We focus on deploying the most fundamental data services, e.g., data management and data utilization, while considering reliability and privacy assurance. The first part of this dissertation discusses secure and reliable cloud data management to guarantee the data correctness and availability, given the difficulty that data are no longer locally possessed by data owners. We design a secure cloud storage service which addresses the reliability issue with near-optimal overall performance. By allowing a third party to perform the public integrity verification, data owners are significantly released from the onerous work of periodically checking data integrity. To completely free the data owner from the burden of being online after data outsourcing, we propose an exact repair solution so that no metadata needs to be generated on the fly for the repaired data. The second part presents our privacy-preserving data utilization solutions supporting two categories of semantics - keyword search and graph query. For protecting data privacy, sensitive data has to be encrypted before outsourcing, which obsoletes traditional data utilization based on plaintext keyword search. We define and solve the challenging problem of privacy-preserving multi- keyword ranked search over encrypted data in cloud computing. We establish a set of strict privacy requirements for such a secure cloud data utilization system to become a reality. We first propose a basic idea for keyword search based on secure inner product computation, and then give two improved schemes to achieve various stringent privacy requirements in two different threat models. We also investigate some further enhancements of our ranked search mechanism, including supporting more search semantics, i.e., TF × IDF, and dynamic data operations. As a general data structure to describe the relation between entities, the graph has been increasingly used to model complicated structures and schemaless data, such as the personal social network, the relational database, XML documents and chemical compounds. In the case that these data contains sensitive information and need to be encrypted before outsourcing to the cloud, it is a very challenging task to effectively utilize such graph-structured data after encryption. We define and solve the problem of privacy-preserving query over encrypted graph-structured data in cloud computing. By utilizing the principle of filtering-and-verification, we pre-build a feature-based index to provide feature-related information about each encrypted data graph, and then choose the efficient inner product as the pruning tool to carry out the filtering procedure."

Identiferoai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-dissertations-1332
Date31 July 2012
CreatorsCao, Ning
ContributorsJoshua D. Guttman, Committee Member, Berk Sunar, Committee Member, Xinming Huang, Committee Member, Wenjing Lou, Advisor
PublisherDigital WPI
Source SetsWorcester Polytechnic Institute
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDoctoral Dissertations (All Dissertations, All Years)

Page generated in 0.0094 seconds