Consider either (i) f = f1 ⊠ f2 for two Maass cusp forms for SLm(ℤ) and SLm′(ℤ), respectively, with 2 ≤ m ≤ m′, or (ii) f= f1 ⊠ f2 ⊠ f3 for three weight 2k holomorphic cusp forms for SL2(ℤ). Let λf(n) be the normalized coefficients of the associated L-function L(s, f), which is either (i) the Rankin-Selberg L-function L(s, f1 ×f2), or (ii) the Rankin triple product L-function L(s, f1 ×f2 ×f3). First, we derive a Voronoi-type summation formula for λf (n) involving the Meijer G-function. As an application we obtain the asymptotics for the smoothly weighted average of λf (n) against e(αnβ), i.e. the asymptotics for the associated resonance sums. Let ℓ be the degree of L(s, f). When β = 1/ℓ and α is close or equal to ±ℓq 1/ℓ for a positive integer q, the average has a main term of size |λf (q)|X 1/2ℓ+1/2 . Otherwise, when α is fixed and 0 < β < 1/ℓ it is shown that this average decays rapidly. Similar results have been established for individual SLm(ℤ) automorphic cusp forms and are due to the oscillatory nature of the coefficients λf (n).
Identifer | oai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-6410 |
Date | 01 May 2016 |
Creators | Czarnecki, Kyle Jeffrey |
Contributors | Ye, Yangbo |
Publisher | University of Iowa |
Source Sets | University of Iowa |
Language | English |
Detected Language | English |
Type | dissertation |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | Copyright 2016 Kyle Czarnecki |
Page generated in 0.0023 seconds