Return to search

Development of molecular markers for marker assisted selection for seed quality traits in oilseed rape

Molecular markers for seed quality traits including erucic acid content genes, seed coat color genes in Brassica napus and seed coat color genes in B. rapa were developed. A single base change in the Bn-FAE1.1 gene in the A genome and a two-base deletion in the Bn-FAE1.2 gene in the C genome produce the nearly zero content of erucic acid observed in canola. The single base change was detected as single nucleotide polymorphic (SNP) marker with an ABI SNaPshot kit. A multiplexing primer set was designed by adding a polyT to the 5´ primer end to increase SNP detection throughput through sample pooling. The two-base deletion in the C genome gene was detected as a sequence characterized amplified region (SCAR) marker in an ABI 3100 Genetic analyzer. To increase the throughput, one genome specific primer was labeled with four fluorescence dyes and combined with 20 different primers to produce PCR products with different fragment sizes. These multiplexed high throughput molecular markers have been successfully implemented in our canola/rapeseed breeding programs. Trigenic inheritance was observed for seed coat color in B. napus. Three Sequenced Related Amplified Polymorphism (SRAP) markers very closely linked to the three different seed coat color genes were developed. Chromosome-walking technology was used to convert the SRAP marker into a SCAR marker and a SNP marker. Subsequently, the first seed coat color gene (Bn1) marker was converted into a SCAR marker, and the second seed coat color gene (Bn2) marker was converted into a SNP marker. Digenic inheritance was observed for seed coat color genes in B. rapa. A SRAP marker was identified as being tightly linked to the major seed coat color gene (Br1). The SRAP marker was sequenced and extended sequences were obtained using chromosome-walking technology. The flanking sequences of the SRAP marker contained 24 SNPs and a 12-bp deletion position that allowed the marker to be converted into a co-dominant SNP marker and a co-dominant SCAR marker, respectively. The SCAR marker was detected in the ABI 3100 genetic analyzer with four fluorescently labeled M13 primers integrated with different SCAR primers, which permitted pooling of PCR samples for high throughput detection. / October 2007

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:MWU.anitoba.ca/dspace#1993/2846
Date28 September 2007
CreatorsRahman, Md. Mukhlesur
ContributorsMcVetty, Peter B.E. (Plant Science), Li, Genyi (Plant Science) Schroeder, Dana (Biological Sciences) Pauls, Peter K. (University of Guelph)
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_US
Detected LanguageEnglish
Format2216835 bytes, application/pdf

Page generated in 0.0023 seconds