La caractérisation et le monitoring des ressources en eau souterraine et des processus d'écoulement et de transport associés reposent principalement sur la mise en place de forages (piézomètres). Mais la variété des échelles auxquelles se déroulent ces processus et leur variabilité dans l'espace et dans le temps limitent l'interprétation des observations hydrogéologiques. Dans un tel contexte, l'hydrogéophysique fait appel aux méthodes de prospection géophysique afin, notamment, d'améliorer la très faible résolution spatiale des données de forage et de limiter leur caractère destructif. Parmi les outils géophysiques appliqués à l'hydrogéologie, les méthodes sismiques sont régulièrement utilisées à différentes échelles. Mais la réponse sismique dans le contexte de la caractérisation des aquifères reste complexe. L'interprétation des vitesses estimées est souvent délicate à cause de leur variabilité en fonction de la lithologie de l'aquifère (paramètres mécaniques intrinsèques et géométrie des milieux poreux le constituant, influence du degré de saturation, etc). La perméabilité du milieu a également un effet sur la géométrie d'un réservoir hydrologique dont les contours peuvent varier en espace comme en temps, compliquant ainsi l'interprétation des données sismiques.Les géophysiciens cherchent à pallier ces limites, notamment à travers l'étude conjointe des vitesses (Vp et Vs) des ondes compression (P) et de cisaillement (S), dont l'évolution est par définition fortement découplée en présence de fluides. D'un point de vue théorique, cette approche se révèle appropriée à la caractérisation de certains aquifères, en particulier grâce à l'estimation des rapports Vp/Vs ou du coefficient de Poisson. L'évaluation de ces rapports peut être pratiquée de manière systématique grâce à la tomographie sismique en réfraction en utilisant parallèlement ondes P et S. Mais d'un point de vue pratique, la mesure de Vs reste délicate à mettre en oeuvre car les ondes S sont souvent difficiles à générer et à identifier sur les enregistrements sismiques. Une alternative est proposée par l’estimation indirecte de Vs à partir de l’inversion de la dispersion des ondes de surface, réalisée à partir de mesures de la vitesse des ondes de surface contenues dans les enregistrements sismiques classiques. Bien que généralement proposée pour la caractérisation de milieux 1D, la prospection par ondes de surface peut être déployée le long de sections linéaires dans le but de reconstruire un modèle 2D de distribution des Vs du sous-sol.Une méthodologie a été mise au point afin d'exploiter simultanément et de façon optimale les ondes P et les ondes de surface à partir des mêmes enregistrements sismiques. Lors de sa mise en oeuvre sur le terrain, cette acquisition « en ondes P » a été systématiquement suivie d'une acquisition « en ondes SH » afin de comparer les vitesses Vs obtenues par analyse de la dispersion des ondes de surface et par tomographie en ondes SH. L'utilisation de cette méthodologie dans différents contextes géologiques et hydrogéologiques a permis d'estimer les variations latérales et temporelles du rapport Vp/Vs, en bon accord avec les informations géologiques a priori et les données géophysiques et piézométriques existantes. L'utilisation de l'interférométrie laser a également permis de mettre ces techniques de traitement en application sur des modèles physiques parfaitement contrôlés afin d'étudier la propagation des ondes élastiques dans des « analogues » réalistes de milieux poreux partiellement saturés. / Characterisation and monitoring of groundwater resources and associated flow and transport processes mainly rely on the implementation of wells (piezometers). The interpretation of hydrogeological observations is however limited by the variety of scales at which these processes occur and by their variability in space and in time. In such a context, using geophysical methods often improves the very low spatial resolution of borehole data and limits their destructive nature. Among the geophysical tools applied to hydrogeology, seismic methods are commonly used at different scales. However, the seismic response in the context of aquifer characterisation remains complex. The interpretation of the estimated velocities is often difficult because of their variability depending on the aquifer lithology (intrinsic mechanical parameters and geometry of the constituting porous media, influence of the degree of saturation, etc). The permeability of the medium also affects the geometry of a hydrological reservoir whose contours may vary in space and in time, thus complicating the interpretation of seismic data. Geophysicists seek to overcome these limitations, especially through the joint study of compression (P-) and shear (S-) wave velocities (Vp and Vs), whose evolution is by definition highly decoupled in the presence of fluids. From a theoretical point of view, this approach proves suitable for the characterisation of aquifers, especially by estimating Vp/Vs or Poisson's ratio. The evaluation of these ratios can be systematically carried out with seismic refraction tomography using both P- and S-waves. However, retrieving Vs remains practically delicate because S-waves are usually difficult to generate and identify on seismic records. As an alternative, indirect estimation of Vs is commonly achieved thanks to surface-wave dispersion inversion, carried out from measurements of surface waves phase velocities contained in typical seismic records. Although it is usually proposed for the characterisation of 1D media, surface-wave prospecting can be deployed along linear sections in order to build 2D models of Vs distribution in the ground. A specific methodology has been developed for the combined and optimised exploitation of P- and surface waves present on single seismic records. When deployed on the field, this "P-wave" acquisition has been systematically followed by a "SH-wave" acquisition in order to compare Vs models obtained from surface-wave dispersion analysis and SH-wave refraction tomography. The use of this methodology in several geological and hydrogeological contexts allowed for estimating Vp/Vs ratio lateral and temporal variations in good agreement with a priori geological information and existing geophysical and piezometric data. Laser-based ultrasonic techniques were also proposed to put these processing techniques in practice on perfectly controlled physical models and study elastic wave propagation in partially saturated porous media.
Identifer | oai:union.ndltd.org:theses.fr/2014PA066495 |
Date | 17 November 2014 |
Creators | Pasquet, Sylvain |
Contributors | Paris 6, Bodet, Ludovic, Guérin, Roger |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds