Luminescent lanthanide containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed upon these compounds, the lack of a meaningful understanding of the crystal engineering and luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of luminescence attributed to these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. By comparing molecular and band-based approaches, it was determined that the band structure of the organic sensitizing linker needs to be considered when evaluating the luminescence of lanthanide coordination polymers. This new model, as well as work on the crystal engineering and sensor applications of these materials will be presented. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_38011 |
Contributors | Einkauf, Jeffrey D. (author), De Lill, Daniel T. (Thesis advisor), Florida Atlantic University (Degree grantor), Charles E. Schmidt College of Science, Department of Chemistry and Biochemistry |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Format | 198 p., application/pdf |
Rights | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0018 seconds