Alkylation of [eta5:sigma-Me2C(C5 H4)(C2B10H10)]TiCl(NMe 2) generates [eta5:sigma-Me2C(C5 H4)(C2B10H10)]Ti(R)(NMe 2) (R = Me, CH2TMS), which offers a unique opportunity to observe the direct competition among Ti-C(alkyl), Ti-N and Ti-C(cage) bonds in the insertion reactions with unsaturated molecules. The results indicate that unsaturated molecules insert preferably into the Ti-C (alkyl) bond over the Ti-N bond, while the Ti-C (cage) bond remains intact in all reactions. Several imido-titanium complexes [eta5:sigma-Me2C(C 5H4)(C2B10H10)]Ti(=NR)(Py) and [eta5:sigma-Me2C(C9H6)(C 2B10H10)]Ti(=NtBu)(Py) have been prepared by salt metathesis reactions or imido exchange reactions. These imido complexes can react with a variety of unsaturated molecules to give imido exchange products or [2+2] cycloaddition species. The imido complex [eta5:sigma-Me2C(C5H4)(C 2B10H10)]Ti(=NtBu)(Py) can also catalyze the hydroamination of phenyl acetylene. The key intermediate metallacyclic complex has been isolated and structurally characterized. / By taking the advantage of a cyclic organic group and an icosahedral carborane as well as the bridging ligand, trivalent phosphorus-bridged ligand iPr2NP(C9H7)(C2B 10H11) is designed and successfully synthesized. It is readily converted into the corresponding mono- and di-lithium salts, which have found many applications in transition metal chemistry. A series of organolanthanide and group 4 metal complexes derived from this new ligand have been prepared and structurally characterized. It is found that this ligand can effectively prevent lanthanocene chlorides from ligand redistribution reactions. [eta 5:sigma-iPr2NP(C 9H6)(C2B10H10)]Zr(NMe 2)2 can catalyze ethylene polymerization upon activation with MMAO and initiate the polymerization of epsilon-caprolactone. / iPr2NP(C9H 7)(C2B10H11) can be converted into the pentavalent derivative iPr2NP(O)(C9H 7)(C2B10H11) by treatment with H 2O2. Interactions of M(NMe2)4 with iPr2NP(O)(C9H7)(C2 B10H11) give unexpected products [sigma.sigma- iPr2NP(O)(C9H6)(C2 B10H11)]M(NR2)2. To investigate the similarities and differences between iPr2NP(O)(C 9H7)(C2B10H11) and its fluorenyl derivative in chemical properties, iPr 2NP(O)(C13H9)(C2B10H 11) is also prepared in a similar manner. It reacts easily with Zr(NMe 2)4 to give the amine elimination product [sigma.sigma- iPr2NP(O)(C13H8)(C 2B10H10)]Zr(NMe2)2(THF). However, treatment of iPr2NP(O)(C 2B10B11)(C2B10H11) with Ti(NMe2)4 affords amine elimination/deboration complex [sigma:eta5-iPr 2NP(O)(C13H9)(C2B9H 10)]Ti(NMe2)2. / Wang Hong. / "February 2005." / Adviser: Xie Zuomei. / Source: Dissertation Abstracts International, Volume: 67-01, Section: B, page: 0265. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 168-180). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_343604 |
Date | January 2005 |
Contributors | Wang, Hong, Chinese University of Hong Kong Graduate School. Division of Chemistry. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, theses |
Format | electronic resource, microform, microfiche, 1 online resource (xvi, 367 p. : ill.) |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0016 seconds