In the research field of spintronics, it is essential to have a deep understanding of the relaxation mechanisms of the spin degree of freedom. To this end, we study the spin relaxation in semiconductor nanostructures with spin-orbit interaction. First we analyze the spin decay and dephasing in graphene quantum dots within the framework of the Bloch-Redfield theory. We consider a gate-tunable circular graphene quantum dot where the intrinsic and Rashba spin-orbit interactions are operative. We derive an effective Hamiltonian via the Schrieffer-Wolff transformation describing the coupling of the electron spin to potential fluctuations generated by the lattice vibrations. The spin relaxation occurs with energy relaxation provided by the electron-phonon coupling and the spin-flip transition assisted by spin-orbit interactions. We predict a minimum of the spin relaxation time T1 as a function of the external magnetic field Bext caused by the Rashba spin-orbit coupling-induced anticrossing of opposite spin states. By constrast, the intrinsic spin-orbit interaction leads to monotonic behavior of T1 with Bext due to direct spin-phonon coupling. We also demonstrate that the spin decoherence time T2 = 2T1 in graphene is dominated by relaxation processes up to leading order in the spin-orbit interaction and the electron-phonon coupling mechanisms. Secondly, we develop a numerical model to account for the D´yakonov-Perel spin relaxation mechanism in multisubband quantum wires. We consider the elastic spin-conserving scattering events in the time-evolution operator and then evaluate the time-dependent expectation value of the spin operators. After averaging these results over an ensemble, we can extract the spin relaxation time as a function of Bext. We observe a non-monotonic behavior for the spin relaxation time with Bext aligned perpendicularly to the quantum wire. This effect is called ballistic spin resonance. In our model, the ballistic spin resonance occurs near the subband anticrossing induced by the subband-spin mixing spin-orbit interaction term. In systems with weak spin-orbit coupling strenghts, no spin resonance is observed when Bext is parallel to the channel. Nevertheless, we also predict the emergence of anomalous resonances plateaus in systems with strong spin-orbit couplings even when Bext is aligned with the quantum wire. Finally, we predict the emergence of a robust spin-density helical crossed pattern in two-dimensional electron gas with Rashba α and Dresselhaus β spin-orbit couplings. This pattern arises in a quantum well with two occupied subbands when the spin-orbit coupling strenghts are tuned to have equal absolute strengths but opposite signs, e.g., α1 = +β1 e α2 = −β2 for the first v = 1 and second v = 2 subbands. We named this novel pattern as crossed persistent spin helices. We analyze the spin-charge coupled diffusion equations in order to investigate the lifetime of the crossed persistent spin helices and the feasibility of probing the crossed persistent spin helix mode. We also study the inteband spin-orbit interaction effects on the crossed persistent spin helices, energy anticrossings and spin textures induced by the interband spin-orbit coupling / No campo de pesquisa denominado spintrônica é de fundamental importância o entendimento dos mecanismos de relaxação de spin. A fim de contribuir com esse objetivo, estudamos a relaxação de spin em nanoestruturas semicondutoras na presença da interação spin-órbita. Primeiramente, analisamos o decaimento e defasamento do spin eletrônico em pontos quânticos formados no grafeno usando a teoria de Bloch-Redfield. Consideramos um ponto quântico circular com as interações spin-órbita intrínseca e de Rashba. A relaxação de spin ocorre via relaxacação de energia pela interação elétron-fônon acompanhado do mecanismo de spin-flip auxiliado pela interação spin-órbita. Previmos a presença de um mínimo no tempo de relaxação de spin T1 em função do campo magnético externo Bext causado pelo acoplamento spin-órbita de Rashba que por sua vez leva a cruzamento evitado de níveis de energia com spins opostos. Em contraste, a interação spin-órbita intrínseca gera um comportamento monotônico de T1 com Bext devido ao acoplamento direto spin-fônon. Demonstramos também que o tempo de decoerência de spin T2 = 2T1 é dominado por contribuições dos mecanismos de relaxação em primeira ordem na interação spin-órbita e na interação elétron-fônon. Desenvolvemos também um modelo numérico que leva em conta o mecanismo de relaxação de spin de D´yakonov-Perel em fios quânticos com múltiplas subbandas. Consideramos espalhamentos elásticos, que conservam a orientação do spin, no operador evolução temporal. Em seguida, calculamos o valor esperado dos operadores de spin dependentes do tempo para um ensemble de elétrons. Por fim, extraímos o tempo de relaxação de spin em função do campo magnético externo Bext. Observamos um comportamento não-monotônico da relaxação de spin para um campo Bext alinhado perpendicularmente ao fio quântico. Em sistemas com acoplamento spin-órbita fracos, nenhuma ressonância de spin é encontrada quando Bext está alinhado paralelamento ao fio quântico. No entanto, previmos o aparecimento de ressonâncias de spin anômalas em sistemas com forte acoplamento spin-órbita mesmo quando Bext está alinhado ao canal balístico. Por fim, estudamos a formação de uma densidade de spin helicoidal cruzada e robusta contra espalhamento por impurezas em um gás bi-dimensional de elétrons na presença das interações spin-órbita de Rashba α and Dresselhaus β. Generalizamos o efeito previsto para um poço quântico com uma subbanda para duas subbandas ocupadas quando as interações spin-órbita assumem o mesmo valor em intensidade mas sinais opostos, e.g., α1 = +β1 e α2 = −β2 para a primeira v = 1 e segunda v = 2 subbandas. Denominamos esse novo padrão de helicóides de spin persistentes e cruzadas. Analisamos as equações de difusão com carga e spin acoplados com o intuito de investigarmos o tempo de vida das densidades de spin helicoidais cruzadas e a possibilidade de medi-las com os experimentos atuais. Estudamos também o efeito da interação spin-órbita interbanda na relaxação dos modos helicoidais de spin, espectro de energia com cruzamentos evitados e texturas de spin
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-13012014-151605 |
Date | 01 November 2013 |
Creators | Hachiya, Marco Antonio de Oliveira |
Contributors | Menezes, Jose Carlos Egues de |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0029 seconds