Return to search

Design of self-repairable superhydrophobic and switchable surfaces using colloidal particles

The design of functional materials with complex properties is very important for different applications, such as coatings, microelectronics, biotechnologies and medicine. It is also crucial that such kinds of materials have a long service lifetime. Unfortunately, cracks or other types of damages may occur during everyday use and some parts of the material should be changed for the regeneration of the initial properties. One of the approaches to avoid the replacement is utilization of self-healing materials.

The aim of this thesis was to design a self-repairable material with superhydrophobic and switchable properties using colloidal particles. Specific goals were the synthesis of colloidal particles and the preparation of functional surfaces incorporated with the obtained particles, which would exhibit a repairable switching behavior and repairable superhydrophobicity. In order to achieve these goals, first, methods of preparation of simple and functional colloidal particles were developed. Second, the behavior of particles at surfaces of easy fusible solid materials, namely, paraffin wax or perfluorodecane, was investigated.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-135854
Date06 March 2014
CreatorsPuretskiy, Nikolay
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Manfred Stamm, Dr. Leonid Ionov, Prof. Dr. Manfred Stamm, Prof. Dr. Vladimir Tsukruk
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0047 seconds