Return to search

On the Approximation of finite Markov-exchangeable processes by mixtures of Markov Processes

We give an upper bound for the norm distance of (0,1) -valued Markov-exchangeable random variables to mixtures of distributions of Markov processes. A Markov-exchangeable random variable has a distribution that depends only on the starting value and the number of transitions 0-0, 0-1, 1-0 and 1-1. We show that if, for increasing length of variables, the norm distance to mixtures of Markov processes goes to 0, the rate of this convergence may be arbitrarily slow. (author's abstract) / Series: Forschungsberichte / Institut für Statistik

Identiferoai:union.ndltd.org:VIENNA/oai:epub.wu-wien.ac.at:epub-wu-01_a07
Date January 1991
CreatorsPötzelberger, Klaus
PublisherDepartment of Statistics and Mathematics, WU Vienna University of Economics and Business
Source SetsWirtschaftsuniversität Wien
LanguageEnglish
Detected LanguageEnglish
TypeWorking Paper, NonPeerReviewed
Formatapplication/pdf
Relationhttp://epub.wu.ac.at/526/

Page generated in 0.0018 seconds