This master thesis concerns with emotional states and gender recognition on the basis of speech signal analysis. We used various prosodic and cepstral features for the description of the speech signal. In the text we describe non-invasive methods for glottal pulses estimation. The described features of speech were implemented in MATLAB. For their classification we used the GMM classifier, which uses the Gaussian probability distribution for modeling a feature space. Furthermore, we constructed a system for recognition of emotional states of the speaker and a system for gender recognition from speech. We tested the success of created systems with several features on speech signal segments of various lengths and compared the results. In the last part we tested the influence of speaker and gender on the success of emotional states recognition.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:218117 |
Date | January 2009 |
Creators | Houdek, Miroslav |
Contributors | Přinosil, Jiří, Atassi, Hicham |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds