Return to search

Accurate Calculations of Nonlinear Optical Properties Using Finite Field Methods

Molecular nonlinear optical (NLO) properties are extensively studied using both theory and experiment because of their use in myriad applications. Experimental measurements of the most interesting molecules’ NLO properties are difficult, so experimental data for molecules with desirable NLO properties is scarce. Theoretical tools don’t suffer from the same limitations and can provide significant insights into the physico-chemical phenomena underlying the nonlinear responses, can help in interpreting response behaviour of molecules, and can guide design the materials with desirable response properties. Here, I present my work on developing methods for accurately calculating the NLO properties of molecules using the finite field (FF) approach.
The first chapter provides a background for the finite field and electronic structure methods used in this dissertation. Chapter two is a thorough investigation of the finite field method. The limitations of the method are highlighted and the optimal conditions for overcoming its drawbacks and obtaining meaningful and accurate results are described. Chapter three presents the first systematic study of the dependence of optimal field strengths on molecular descriptors. The first protocol for predicting the optimal field for the second hyperpolarizability is presented and successfully tested, and the dependence of the optimal field strength for the first hyperpolarizability on the molecular structure is investigated. Chapter four is an assessment of various DFT functionals in calculating the second hyperpolarizabilities of organic molecules and oligomers. This study shows the limitations of conventional DFT methods and the importance of electron correlation to response properties. In chapter five we present a new method of calculating NLO properties using a rational function model that is shown to be more robust and have lower computational cost than the traditional Taylor expansion. Finally, chapter six includes a summary of the thesis and an overview of future work. / Thesis / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/22082
Date11 1900
CreatorsMohammed, Ahmed A. K.
ContributorsAyers, Paul W., Chemistry
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds