Return to search

Autoradiographic Localization of Carbachol-Induced Second Messenger Response in the Rat Spinal Cord Following Inflammation.

This study examined central mechanisms of persistent pain using an autoradiographic technique to localize phosphoinositide hydrolysis (PI) in the rat spinal cord dorsal horn. The lateral half of laminae I-II showed the highest levels of baseline PI turnover and carbachol-stimulated PI turnover in normal animals as well as after inflammation. Inflammation resulted in increased baseline PI turnover in this region of the ipsilateral (76%) and contralateral (65%) dorsal horns. Carbachol increased PI turnover in this region in normal rats (55%) and following inflammation (ipsilateral: 46%, contralateral: 45%). The absolute magnitudes of these increases were 1.85, 2.71, and 2.51 nCi/mg, respectively. The results of this study demonstrate the involvement of PI turnover in neural mechanisms of persistent pain, and provide evidence for the involvement of cholinergic systems in this process. Because spinal cholinergic systems have been reported to be anti-nociceptive, the present results appear to reflect an upregulation of anti-nociceptive activity in response to inflammation. Thus, the spinal cholinergic system may be a regulatory site within the anti-nociceptive pathway, and may provide an attractive target for the development of new therapeutic agents.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc3125
Date05 1900
CreatorsMoore, Jack
ContributorsSchwark, Harris, Fuchs, Jannon L., Gross, Guenter W., Droge, Michael
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Moore, Jack, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0019 seconds