Zusammenfassung NKT Zellen wurden ursprünglich über die gleichzeitige Expresion eines T-Zellantigenrezeptors (TZR) und den NK-Zellmarkern NKRP1A im Menschen bzw. NK1.1. (NKRP1C) in der Maus definiert. In Mensch und Maus exprimieren die meisten NKT Zellen CD1d restringierte TZR mit charakteristischen Genumlagerungen- Va24JaQ/Vb11 im Menschen und Va14Ja18/Vb8.2 in der Maus. Den NKT Zellen werden außerdem wichtige Funktionen in der „first line defence“ und der Immunregulation zugesprochen. Gegenstand der Doktorarbeit war die Charakterisierung eines hypothetischen Gegenstückes in der Ratte. In der Maus wurden rund 30% der intrahepatischen Lymphozyten (IHL) und 3% der Milzlymphozyten als CD1d restringierte NK T Zellen identifiziert und konnten mittels a-GalCer beladenen Maus-CD1d Tetramer visualisiert werden. Wie in der Maus wurden in der Ratte NKRP1A+TZR+ Zellen vorwiegend in der Leber gefunden, waren aber fünfmal weniger häufig. F344 Ratten NKT Zellen waren darüber hinaus im Gegensatz zu den CD4+ oder CD4-CD8- Maus NKT Zellen meistens CD8 positiv und banden kein mCD1d Tetramer. Da in der menschlichen Leber CD1d-restringierte Va24JQ+ T Zellen ebenfalls viel seltener als in der Maus sind, scheint es nun möglich, daß der Phänotyp der Ratten NKT Zellen eher dem des Menschen als dem der Maus entspricht. Ein Test der Fähigkeit von F344 Leber- und Milzlymphozyten nach Kultur mit a-GalCer Cytokine zu produzieren, ergab ähnlich wie in der Maus eine Produktion von IL-4 und IFN-g;. Aus diesem Grund kann eine fehlende Reaktivität von Ratten NKT Zellen für a-GalCer nicht der Grund für eine fehlende mCD1d Tetramerbindung sein. Um die Reaktivität der NKRP1A+TZR+ Rattenzellen auf a-GalCer besser zu verstehen, wurde der Ratten TZR analysiert. RT-PCR von Leberlymphozyten mit Va14-spezifischen Primern und die Analyse der klonierten PCR Produkte ergab ein viel schwächeres Signal für Ratten als für Maus cDNA. Darüber hinaus zeigten Sequenzanalysen, daß das Va14 auch mit anderen J als dem für TCRinv typischem Ja18 rearrangiert war. Die niedrige Anzahl von Va14Ja18 „in frame“ Umlagerungen legt Nahe, daß nur ein kleiner Anteil der Leber-lymphozyten CD1d restringierte NKT Zellen sind. Maus und humane NKT Zellen erkennen durch CD1d-b2m Komplexe präsentiertes a-GalCer und reagieren mit Aktivierung, Proliferation und Cytokinproduktion. Um die Fähigkeit von Maus und Ratten-CD1d a-GalCer zu präsentieren, zu testen, wurde das CD1d Molekül der Ratte kloniert. Sequenzanlyse und funktionelle Tests bestätigten die strukturelle und funktionelle Homologie des CD1d beider Spezies. Gleichzeitig wurde zur Analyse der Reaktivität von NKRP1A+TZR+ Zellen auf a-GalCer ein Ratten Va14+ invarianter TZR kloniert und in einem TZR- T-Zellhybridom (BWr/mCD28) exprimiert. Zellen die transgenen Ratten Va14+TZR und CD28 exprimierten, sezernierten IL-2 nach Stimulation mit aTZR/CD3 Antikörper aber zeigten keine Spezifität für a-GalCer. Die fehlende Reaktivität für a-GalCer und die fehlende Bindung von mCD1-a-GalCer Tetramer waren wahrscheinlich durch Aminosäuresubstitionen insbesondere an Position 71 (51 nach IMGT Nomenklatur) der klonierten TZRa Kette begründet. Eine „Umkehrung“ dieser Änderung wurde mittels molekularbiologischer Techniken durchgeführt aber Expression dieses TZR auf BWr/mCD28 wurde nicht erreicht. Im Gegensatz zum invarianten Va14+ Ratten TZR war der Maus Va14+ TZR voll funktional und spezifisch für mCD1d Tetramer. KT12 Hybridom und Maus TZRinv exprimierende BWr/mCD28 Zellen wurden sowohl durch Ratten als durch Maus CD1d präsentiertes a-GalCer aktiviert. Dasselbe galt für TZR, die eine Maus Va14 TZR Kette und eine Ratten Vb8.4 TZR Kette enthielten. Im Gegensatz hierzu antworteten Linien mit mVa14 und Ratten Vb8.2 nur auf durch Ratten und nicht auf durch Maus CD1d präsentiertes a-GalCer und banden nahezu kein mCD1d Tetramer. Dies legt Nahe, daß Keimbahn kodierte der b-Kettenbereiche (CDR2 oder CDR4) speziesspezifische Bereiche des CD1d erkennen. Weiterhin wurde gefunden, das die Zytokinsekretion der Zellinien durch CD80 spezifische monoklonale Antikörper inhibiert wurde, was eine wichtige Rolle der CD80-CD28 Interaktion bei der Aktivierung dieser Zellen nahelegt. Um zu sehen ob NKT Zellen auch in anderen Rattenstämmen als F344 existieren, wurde Häufigkeit und Funktion von NKRP1A+TZR+ Zellen in F344 und LEW Ratten miteinander verglichen. F344 und LEW, zwei Rattenstämme die unterschiedliche CD1d Allele tragen, zeigten in der Analyse mit einem neu generierten rCD1d spezifischen monoklonalen Antikörper nur geringe Unterschiede in der Expressionsstärke. Hingegen, unterschieden sich beide Stämme in der Reaktivität für a-GalCer. NKRP1A+ Zellen waren in der LEW Ratte weniger häufig als in der F344 Ratte und antworteten in vitro nicht auf a-GalCer oder sein Analogon OCH. Ein Resultat, das insbesodere angesichts der besonderen Empfänglichkeit von LEW Ratten für experimentell induzierte organspezifische Autoimmunerkrankungen von besonderem Interesse ist. Zusammgefasst kann gesagt werden, daß das Maus und Ratten CD1d/TZRinv NKT Zellsystem hohe strukturelle und funktionale Homologie aufweist, aber daß es wie im Menschen weniger invariante NKT Zellen in der Ratte als in der Maus gibt. TZR transgene Zelllinien wiesen ein speziesspezifisches Muster in der a-GalCer Erkennung auf, das für die Analyse von CDd/TZR-Kontaktbereichen von großem Nutzen sein wird. Dasselbe gilt für den Ratten und Maus-CD1d-spezifischen monoklonalen Antikörper, der im Rahmen der Studie generiert wurde. Dieser kann bei der Charakterisierung der CD1d Proteinexpression in verschiedenen Geweben und der besseren funktionellen Charakterisierung von CD1d restringierten T Zellen der Ratte eingesetzt werden. / Summary: Originally, NKT cells have been defined by their expression of T-cell receptor (TCR) and NK cell markers NKRP1A in human and NK1.1 (NKRP1C) in mouse. Most of these cells express CD1d-restricted TCR with a characteristic rearrangement- Va24JaQ/Vb11 in human and Va14Ja18/Vb8.2 in mouse, and have been implicated in playing an important role in first line defence and immunoregulation. The subject of this thesis was the characterisation of the hypothetical rat NKT cell population. In the mouse system, CD1d-restricted NK1.1+ T cells represented around 30% of intrahepatic and around 3% of splenic lymphocytes and could be visualised by staining with a-GalCer-loaded mouse CD1d tetramer. Rat NKRP1A+TCR+ cells, similar to mouse NKT cells, were predominantly expressed in the liver. However, their frequency was around 5 fold lower than the frequency of mouse intrahepatic lymphocytes. F344 rat NKT cells, in contrast to mouse CD4+ or DN NK1.1+ T lymphocytes, were of CD8 rather than CD4 phenotype, and did not bind to mCD1d-a-GalCer-tetramer. Since human hepatic CD1d-restricted Va24JQ+ T cells are not as frequent as their mouse counterparts and may express CD8- a marker not expressed by mouse CD1d-restricted cells, it is possible that the phenotype of F344 rat NKT cells corresponds more to the phenotype of human than mouse NKT cells. Similar to mouse NKT cells, F344 rat liver- and spleen-derived lymphocytes were able to produce IL-4 and IFN-g; when stimulated with the synthetic ligand a-GalCer in vitro. Therefore, the lack of binding of rat lymphocytes to mouse CD1d tetramer could not be due to their inability to respond to a-GalCer. To better characterise the reactivity of rat NKRP1A+TCR+ cells to a-GalCer, the rat invariant TCR was analysed. RT-PCR of liver lymphocytes with Va14-specific primers and subsequent cloning revealed a much weaker PCR signal for rat lymphocyte cDNA than for mouse cDNA. Furthermore the analysis of rat AV14JA18 sequences showed that the rat Va14+TCR invariant could be rearranged not only with AJ18 but also with other AJ segments. The low number of clones with in frame Va14Ja18 rearrangement could suggest that only a small proportion of liver lymphocytes were CD1d restricted NKT cells. Mouse and human NKT cells are able to recognise a-GalCer presented by the CD1d-b2 microglobulin complex, leading to their activation, proliferation and cytokine secretion. In order to compare the capacity of mouse and rat CD1d to present a-GalCer, rat CD1d was cloned. Sequence analysis and functional tests in vitro confirmed the structural and functional homology of rat CD1d with mouse CD1d. In parallel, to characterise the reactivity of rat NKRP1A+TCR+ cells to a-GalCer, rat Va14+TCR invariant was cloned and expressed in the TCR- T cell hybridoma BWr/mCD28. Rat Va14TCR+CD28+ transgenic cells secreted IL-2 upon aTCR/CD3 antibody stimulation, but were not specific for a-GalCer. Such cells were also negative in staining with mCD1d-a-GalCer tetramer. The lack of reactivity to a-GalCer and the lack of binding to mouse tetramer were probably caused by amino acid alterations, particularly at position 72 (51 according to IMTG nomenclature) of cloned rat TCRinv. Reversal of these “alterations” using molecular biology techniques was performed but the expression of this TCR on the surface of BWr/mCD28 cells could not be achieved. In contrast to rat TCRinv, mouse Va14+TCR was fully functional and was specific for mouse CD1d tetramer. KT12 hybridoma and BWr/mCD28 cells expressing mouse TCRinv, when stimulated with a-GalCer presented by primary CD1d+ cells or rCD1d transgenic cell lines, produced IL-2 in an Ag- and CD1d-dependent manner. Transgenic lines expressing TCR comprising mouse Va14 and rat Vb8.4 responded to a-GalCer presented by rat and mouse CD1d, and bound mCD1 tetramer. By contrast, cell lines expressing TCR comprising mouse Va14 and rat Vb8.2 responded only to a-GalCer presented by rCD1d and bound weakly to mCD1d tetramer. This suggests that germ line encoded regions of the b-chain (CDR2 or CDR4) bind to species-specific determinants of CD1d. The cytokine secretion of the cell lines was inhibited by anti-CD80 mAb, indicating the importance of CD80-CD28 costimulation in their activation. To check whether rat NKT cells may exist in other rat strains, the frequency and functions of NKRP1A+TCR+ in F344 and LEW rat were compared. F344 and LEW, two rat strains expressing different allelic CD1d forms, varied slightly in the level of CD1d expression, as assessed by staining with a newly generated CD1d specific monoclonal antibody. By contrast, these rat strains differed in terms of a-GalCer recognition. NKRP1A+TCR+ cells were less frequent in LEW than in F344 rats, and did not respond to a-GalCer or the analogue OCH in vitro, a result which is of special interest considering the susceptibility of LEW but not F344 rats to experimentally induced organ specific autoimmune diseases. In summary, the rat and mouse CD1d-invariant TCR systems show a high degree of structural and functional homology, but it seems that invariant NKT cells in rat, similar to such cells in human, occur at lower frequency than in mice. TCR transgenic cell line species-specific patterns of CD1d a-GalCer reactivity will provide a valuable tool for the mapping of CD1d/TCR contacts. Also monoclonal antibodies specific for rat and mouse CD1d, generated in this study, provide valuable tools to determine CD1d protein expression in various rat tissues and will help to better characterise functions of CD1d-restricted rat T cells.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:844 |
Date | January 2004 |
Creators | Pyz, Elwira |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0154 seconds