Current private transportation remains very harmful for the environment, especially the non-electric vehicles. This report proposes five novel type of nanomaterials-based Li-ion batteries to improve substantially the electric vehicle battery properties along with a substantial reduction of the environmental impact of its commercial counterparts. To address the problem, a cradle-to-gate life-cycle assessment has been performed in which the biggest emphasis has been focused on the energy and materials inputs and outputs during the raw materials extraction. We show how the analyzed Ni-doped graphene battery and Fe3O4-based Cu battery are the most environmentally friendly, stable, reliable and improved batteries among the five cases of study. These results can open new horizons for future advances in the implantation of an electromobility transportation. / <p>I presented my work via Skype while sharing the screen.</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hig-27987 |
Date | January 2018 |
Creators | Martinez Pancorbo, Pablo |
Publisher | Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds