Non-destructive testing (NDT) combines the application of the sciences of phys-ics, mathematics, chemistry, and biology to create a comprehensive process, that can be used for inspection, examination, and testing of materials or components to find flaws, defects or discontinuities at the surface, subsurface areas, or inner volume of the component under test. NDT maintains the serviceability of the component after inspection, without causing any damage to its original form or usefulness. In addition to the need for safety, NDT is used to ensure the efficiency and durability of the equipment. NDT is carried out to ascertain that the compo-nents or materials being used are not damaged or faulty and are fit to be used by any personnel. The result of testing can show whether the components need to be repaired or if they are safe for operation. The first NDT method to evolve in the industrial age was X-ray testing (RT). This innovation was discovered by German physicist Wilhelm Conrad Röntgen in 1895. His experiments involved cathode rays which led to not only the discovery of X-ray but to the first Nobel Prize. Among all NDT methods, RT is no exception, so there are still many issues for optimizations even today. One of them is the measurement of the focal spot of X-ray tubes. The size of the focal spot is critical for imaging because it deter-mines the spatial resolution in the X-ray image. The classical way to image focal spots of X-ray tubes is by pinhole imaging using a camera obscura. This is caused by the fact, that X-ray radiation cannot be imaged by lenses like optical wavelengths. This pinhole imaging has been standardized since a long time, e.g., by EN 12543:1999, ASTM E 1165:1992, IEC 336:1982, and DIN 6823:1962. But this method has a natural lower limit, which is defined by the diameter of the pin-hole (today min. 10 µm). Focal spot sizes lower than this diameter cannot be im-aged and measured correctly. Meanwhile, the development of algorithms of Computed Tomography allows a similar approach for focal spot imaging but using pinholes with a much larger diameter than the focal spot size to be imaged. In such a large hole the edge unsharpness of the hole rim by the focal spot size can be measured in different directions, and a first derivative following a CT recon-struction will deliver a nearly identical focal spot image compared to classical pin-hole imaging. There is principal no lower focal spot size limit anymore. Computa-tional problems must be analyzed and application and parameter range for practi-cal focal spot measurements have to be determined.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:92660 |
Date | 18 July 2024 |
Creators | Hashemi, Seyedreza |
Contributors | Dresden International University |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:masterThesis, info:eu-repo/semantics/masterThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds