Return to search

Applied System Identification for a Four Wheel Reaction Wheel Platform

Applied System Identification for a Four Wheel Reaction Wheel Platform
By
Seth Franklyn Silva
At the California Polytechnic State University, San Luis Obispo there is a four-wheel reaction wheel pyramidal simulator platform supported by an air-bearing. This simulator has the current capability to measure the wheel speeds and angular velocity of the platform, and with these measurements, the system identification process was used to obtain the mass properties of this simulator. A handling algorithm was developed to allow wireless data acquisition and command to the spacecraft simulator from a “ground” computer allowing the simulator to be free of induced torques due to wiring. The system identification algorithm using a least squares estimation scheme was tested on this simulator and compared to theoretical analysis. The resultant principle inertia about the z-axis from the experimental analysis was 3.5 percent off the theoretical, while the other inertias had an error of up to 187 percent. The error is explained as noise attributed to noise in the measurement, averaging inconsistencies, low bandwidth, and derivation of accelerations from measured data.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1335
Date01 June 2010
CreatorsSilva, Seth F
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses and Project Reports

Page generated in 0.0014 seconds