Return to search

Danger Signal in a Rat Model of Nevirapine-induced Skin Rash

Nevirapine (NVP) can cause serious skin rashes and hepatotoxicity. It also causes an immune-mediated skin rash in rats but not hepatotoxicity. There is strong evidence that the rash is due to 12-hydroxynevirapine (12-OH-NVP), which is further metabolized to a reactive benzylic sulfate in the skin. This could both act as a hapten and induce a danger signal. In contrast, most of the covalent binding in the liver appears to involve oxidation of the methyl group leading to a reactive quinone methide. In this study we examined the effects of NVP and 12-OH-NVP on gene expression in the liver and skin. Both NVP and 12-OH-NVP induced changes in the liver, but the list of genes was different, presumably reflecting different bioactivation pathways. In contrast, many more genes were up-regulated in the skin by 12-OH-NVP than by NVP, which is consistent with the hypothesis that the 12-hydroxylation pathway is involved in causing the rash. Some genes up-regulated by 12-OH-NVP were Trim63, S100a7a, and IL22ra2, etc. Up-regulation of genes such as S100a7a, which is considered a danger signal, supports the danger hypothesis. Up-regulation of genes such as the ubiquitin ligase and Trim63 are consistent with protein-adduct formation. Up-regulation of IL-22ra2 gene suggests an immune response. These results provide important clues to how NVP causes induction of an immune response, in some cases leading to an idiosyncratic drug reaction.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/32332
Date26 March 2012
CreatorsZhang, Xiaochu
ContributorsUetrecht, Jack
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds