>Magister Scientiae - MSc / This study investigated the effects that drought stress imposed on the growth and development of soybean plants. Soybeans were initially observed at the whole-plant level in order to identify the physical changes that had taken place in response to drought. Further investigation of the effects of drought stress on Soybean plants were quantified at the molecular level. Physical changes of soybeans in response to drought stress were typified by the change in leaf morphology and pigmentation. At the molecular level, it was observed that drought stress resulted in the accumulation of hydrogen peroxide in soybean leaves, which was met by elevated levels of lipid peroxidation. The effects of drought on the modulation of (and interplay between cystatins) cysteine protease (caspase-like) activity and programmed cell death (PCD) were also investigated. Total caspase-like activity and cell death were enhanced in response to water deficit despite the up-regulation in gene expression of the cystatin Glyma14g04250. The cystatin Glyma18g12240 was not expressed in soybean leaves, whilst the gene expression of the cystatin Glyma20g08800 remained unchanged in response to drought. This study was aimed at the characterization of two single domain soybean cystatins, namely, Glyma14g04250 and Glyma20g08800 which could potentially be overexpressed in transgenic soybean plants in an attempt to alleviate the effects of drought stress. / National Research Foundation (NRF)
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uwc/oai:etd.uwc.ac.za:11394/5316 |
Date | January 2015 |
Creators | Karriem, Zaheer |
Contributors | Ludidi, Ndiko |
Publisher | University of the Western Cape |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Rights | University of the Western Cape |
Page generated in 0.0019 seconds