Side effects of radiation therapy (RT) remain the most challenging issue for pancreatic cancer treatment. In this report we determined whether and how cerium oxide nanoparticles (CONPs) sensitize pancreatic cancer cells to RT. CONP pretreatment enhanced radiation-induced reactive oxygen species (ROS) production preferentially in acidic cell-free solutions as well as acidic human pancreatic cancer cells. In acidic environments, CONPs favor the scavenging of superoxide radical over the hydroxyl peroxide resulting in accumulation of the latter whereas in neutral pH CONPs scavenge both. CONP treatment prior to RT markedly potentiated the cancer cell apoptosis both in culture and in tumors and the inhibition of the pancreatic tumor growth without harming the normal tissues or host mice. Mechanistically, CONPs were not able to significantly impact RT-induced DNA damage in cancer cells, thereby ruling out sensitization through increased mitotic catastrophe. However, JNK activation, which is known to be a key driver of RT-induced apoptosis, was significantly upregulated by co-treatment with CONPs and RT in pancreatic cancer cells in vitro and human pancreatic tumors in nude mice in vivo compared to CONPs or RT treatment alone. Further, CONP-driven increase in RT-induced JNK activation was associated with marked increases in Caspase 3/7 activation, indicative of apoptosis. We have shown CONPs increase ROS production in cancer cells; ROS has been shown to drive the oxidation of thioredoxin (TRX) 1 which results in the activation of Apoptosis Signaling iv Kinase (ASK) 1. The dramatic increase in ASK1 activation following the co-treatment of pancreatic cancer cells with CONPs followed by RT in vitro suggests that increased the c-Jun terminal kinase (JNK) activation is the result of increased TRX1 oxidation. The ability of CONPs to sensitize pancreatic cancer cells to RT was mitigated when the TRX1 oxidation was prevented by mutagenesis of a cysteine residue, or the JNK activation was blocked by an inhibitor,. Additionally, angiogenesis in pancreatic tumors treated with CONPs and RT was significantly reduced compared to other treatment options. Taken together, these data demonstrate an important role and mechanisms for CONPs in specifically killing cancer cells and provide novel insight into the utilization of CONPs as a radiosensitizer and therapeutic agent for pancreatic cancer.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-3727 |
Date | 01 January 2013 |
Creators | Wason, Melissa |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0016 seconds