Return to search

Alumina Thin Film Growth: Experiments and Modeling

The work presented in this thesis deals with experimental and theoretical studies related to the growth of crystalline alumina thin films. Alumina, Al2O3, is a polymorphic material utilized in a variety of applications, e.g., in the form of thin films. Many of the possibilities of alumina, and the problems associated with thin film synthesis of the material, are due to the existence of a range of different crystalline phases. Controlling the formation of the desired phase and the transformations between the polymorphs is often difficult. In the experimental part of this work, it was shown that the thermodynamically stable alpha phase, which normally is synthesized at substrate temperatures of around 1000 °C, can be grown using reactive sputtering at a substrate temperature of 500 °C by controlling the nucleation surface. This was done by predepositing a Cr2O3 nucleation layer. Moreover, it was found that an additional requirement for the formation of the α phase is that the depositions are carried out at low enough total pressure and high enough oxygen partial pressure. Based on these observations, it was concluded that energetic bombardment, plausibly originating from energetic oxygen, is necessary for the formation of α alumina (in addition to the effect of the chromia nucleation layer). Further, the effects of impurities, especially residual water, on the growth of crystalline films were investigated by varying the partial pressure of water in the ultra high vacuum (UHV) chamber. Films deposited onto chromia nucleation layers exhibited a columnar structure and consisted of crystalline α-alumina if deposited under UHV conditions. However, as water to a partial pressure of 1x10-5 Torr was introduced, the columnar growth was interrupted. Instead, a microstructure consisting of small, equiaxed grains was formed, and the gamma-alumina content was found to increase with increasing film thickness. When gamma-alumina was formed under UHV conditions, no effects of residual water on the phase formation was observed. Moreover, the H content was found to be low (< 1 at. %) in all films. Consequently, this shows that effects of residual gases during sputter deposition of oxides can be considerable, also in cases where the impurity incorporation in the films is found to be low. In the modeling part of the thesis, density functional theory based computational studies of adsorption of Al, O, AlO, and O2 on different alpha-alumina (0001) surfaces have been performed. The results give possible reasons for the difficulties in growing the α phase at low temperatures through the identification of several metastable adsorption sites, and also provide insights related to the effects of hydrogen on alumina growth. / Report code: LiU-TEK-LIC-2007:1.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-8461
Date January 2007
CreatorsWallin, Erik
PublisherLinköpings universitet, Plasma och beläggningsfysik, Linköpings universitet, Tekniska högskolan, Institutionen för fysik, kemi och biologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Thesis, 0280-7971 ; 1292

Page generated in 0.0018 seconds