In this thesis we investigate the feasibility of learning-based testing (LBT) as a viable testing methodology for reactive systems. In LBT, a large number of test cases are automatically generated from black-box requirements for the system under test (SUT) by combining an incremental learning algorithm with a model checking algorithm. The integration of the SUT with these algorithms in a feedback loop optimizes test generation using the results from previous outcomes. The verdict for each test case is also created automatically in LBT. To realize LBT practically, existing algorithms in the literature both for complete and incremental learning of finite automata were studied. However, limitations in these algorithms led us to design, verify and implement new incremental learning algorithms for DFA and Kripke structures. On the basis of these algorithms we implemented an LBT architecture in a practical tool called LBTest which was evaluated on pedagogical and industrial case studies. The results obtained from both types of case studies show that LBT is an effective methodology which discovers errors in reactive SUTs quickly and can be scaled to test industrial applications. We believe that this technology is easily transferrable to industrial users because of its high degree of automation. / <p>QC 20130312</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-119267 |
Date | January 2013 |
Creators | Sindhu, Muddassar |
Publisher | KTH, Teoretisk datalogi, TCS, Stockholm |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-CSC-A, 1653-5723 ; 2013:03 |
Page generated in 0.1327 seconds