Return to search

Factors controlling etch anisotropy in plasmas

The use of radio frequency (rf) plasma techniques to produce fine structures of precise geometry is widespread in the microelectronics industry. An important factor influencing the functionality of fabricated devices is the wall angle of these structures. In certain applications vertical walls are required - for example to minimise mask degradation and maximise gate densities; in others a sloping sidewall is preferred - to minimise stress in metal coatings when making electrical contact through 'via' holes, for instance. This fine control cannot be achieved on micron and sub-micron scale devices using conventional 'wet' chemical processing techniques and has led to the adoption of so-called 'dry' processing techniques using plasmas. Both vertical and sloping wall profiles can be produced depending upon the plasma conditions. It is apparent, therefore, that a thorough understanding of the processes affecting the etch profile is important. Reactive ion etching (RIE) has been employed to produce micron, and sub-micron size structures in polyimide using an oxygen plasma. Present models of etch directionality all make the initial assumption that the directional component of the etching process can be attributed solely to O2+ ion bombardment of the exposed horizontal surface of the wafer driven by the electric 'sheath' field developed above the electrode. Whether species such as O+ and even multiply charged reactive species such as O++ and O+++ can legitimately be neglected in formulating such a model has yet to be established. That such multiply ionized species exist, however, is highly probable given that plasmas are well known to emit strongly in the ultraviolet. The etching system developed to investigate these problems was equipped with diagnostic techniques including optical emission spectroscopy, mass spectrometry, and a grid energy analyser. The optical emission spectrometer was novel in being capable of measuring emission from the far-ultraviolet emission spectrum of the plasma and was therefore able to detect the high energy ultraviolet light and the singly and multiply ionised species from which this radiation is emitted. Using this technique the role of multiply-ionised species in controlling etch anisotropy was investigated. Results are also presented, obtained from a retarding grid, particle energy analyser built into the surface of the earth electrode, which indicate increased charged particle flux and energy at low pressure providing further information with regard to the process dynamics. The influence of gas pressure and rf excitation frequency on the resultant etch profile have been investigated. Results are presented showing the presence of doubly-ionised atomic oxygen O++ in the plasma. It is shown in this work that O++ also has a role in etch anisotropy at low pressure. This and other more highly charged species need to be considered, therefore, in formulating models of etch anisotropy, etch rate, and etch chemistry and reaction mechanisms. The role of ultraviolet irradiation which is itself of sufficient energy to induce surface reactions must also be considered.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:253281
Date January 1990
CreatorsRobertson, C. J.
PublisherUniversity of Surrey
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://epubs.surrey.ac.uk/843224/

Page generated in 0.0022 seconds