As real time visualizations become more realistic it also becomes more important to simulate the perceptual effects of the human visual system. Such effects include the response to varying illumination, glare and differences between photopic and scotopic vision. This thesis evaluates several different tone mapping methods to allow a greater dynamic range to be used in real time visualisations. Several tone mapping methods have been implemented in the Avalanche Game Engine and evaluated using a small test group. To increase immersion in the visualization several filters aimed to simulate perceptual effects has also been implemented. The primary goal of these filters is to simulate scotopic vision. The tests showed that two tone mapping methods would be suitable for the environment used in the tests. The S-curve tone mapping method gave the best result while the Mean Value method gave good results while being the simplest to implement and the cheapest. The test subjects agreed that the simulation of scotopic vision enhanced the immersion in a visualization. The primary difficulties in this work has been lack of dynamic range in the input images and the challenges in coding real time graphics using a graphics processing unit.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-9749 |
Date | January 2007 |
Creators | Hellsten, Jonas |
Publisher | Linköpings universitet, Institutionen för teknik och naturvetenskap, Institutionen för teknik och naturvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds