Return to search

Toros incompressíveis para ações Anosov de \'R POT. k\' sobre uma variedade de dimensão K+2 / Incompressible torus for Anosov actions of \'R POT. k\' on a manifold of dimension k+2

Dentre todos os sistemas dinâmicos os sistemas Anosov têm atraído a atenção de muitos matemáticos. No caso de fluxo Anosov em uma variedade fechada M de dimensão três, Sérgio Fenley definiu o conceito de losangos no recobrimento universal de M e obteve resultados importantes envolvendo losangos e automorfismos do recobrimento universal. Seguindo o que foi feito por Fenley, e utilizando o conceito de losangos no espaço das órbitas do fluxo levantado (no recobrimento universal), Thierry Barbot obteve condições suficientes para que um toro incompressível numa 3-variedade fechada suportando um fluxo Anosov seja isotópico a um outro que é transverso ao fluxo. Neste trabalho consideramos ações Anosov de \'R POT. k\' sobre uma variedade fechada M de dimensão k + 2. Primeiramente, conseguimos resultados análogos aos de Fenley (sobre existência de losangos) para estas ações, e usando isso, finalmente obtemos condições suficientes para que um toro incompressível seja isotópico a um toro transverso à ação. Este último resultado é uma generalização de Barbot mencionado acima / Among all dynamical systems the Anosov systems has attracted the attention of many mathematicians. In the case of an Anosov flow in a closed manifold M of dimension three, Sérgio Fenley defined the concept of lozenges in the universal covering of M and obtained important results involving lozenges and covering automorphism. Following what was made by Fenley, and using the concept of lozenge on the orbit space of the lifted flow (in the universal covering). Thierry Barbot obtains sufficient conditions for an incompressible torus in a closed 3-manifold supporting an Anosov flow to be isotopic to another which is transverse to flow. If this work we considered Anosov of \'R POT. k\' on a closed manifold M of dimension k + 2. First, we obtain analogous results those of Fenley (about existence of lozenges) for this actions, and using this, finally we obtain sufficient conditions for an incompressible torus to be isotopic to another torus which is transverse to action. This last result is a generalization of Barbot\'s result mentioned above

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-14102011-160937
Date01 September 2011
CreatorsSilva, Romenique da Rocha
ContributorsApaza, Carlos Alberto Maquera
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0018 seconds