Return to search

Characterization of the IIIa protein of porcine adenovirus type 3

The L1 region of the porcine adenovirus (PAdV)-3 genome encodes a protein of 622 amino acids named IIIa. Although it binds a neighboring group of nine (GON) hexons at the capsid level and cement the icosahedral shell that contains the viral DNA, little is known regarding its function with respect to viral life cycle. Moreover, the known location of IIIa protein in the capsid may help to express targeting ligands for altering the tropism of PAdV-3. The objective of this study was to characterize the IIIa protein of porcine adenovirus Type 3 (PAdV-3). <p> In order to characterize the IIIa protein, polyclonal antisera were raised in rabbits against different regions of IIIa. Anti-IIIa sera detected a specific protein of 70 kDa in PAdV-3 infected cells using Western blot assay. Immunofluorescence studies indicated that IIIa is predominantly localized in the nucleus of PAdV-3 infected cells. Analysis of PAdV-3 IIIa using antibodies specific for N- and C- terminal domains of the protein suggested that although the N-terminus and C-terminal domains of IIIa are immunogenic, they are not exposed on the surface of PAdV-3 virions. These results were further confirmed by our inability to isolate a chimeric PAdV-3 virion containing a heterologous protein fused to the N-terminus or C-terminus of IIIa. <p>Functional analysis suggested that IIIa may transactivate the major late promoter and down regulate the early region (E) 1A promoter. In order to locate the domains of IIIa responsible for different functions, in-frame deleted/truncated forms of IIIa were constructed. Analysis of the deleted/truncated forms of IIIa suggested that a) the sequences located between amino acids 273-410 and between amino acids 410-622b) affect the nuclear localization and transactivation function respectively.<p>Since protein- protein interactions are important for the biological functions of the protein, we determined the interaction of PAdV-3 IIIa with other viral proteins. IIIa was found to interact with DNA binding protein (DBP), E3 13.7 kDa protein, hexon, fiber, and pIX. These results suggest that PAdV3 IIIa may do more in the viral life cycle than merely act as cement between the hexons to maintain capsid stability and may actually be involved in regulating early to late gene transcription at appropriate stages during viral infection.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-04252006-105057
Date26 April 2006
CreatorsVan Kessel, Jill Andrea
ContributorsTikoo, Suresh K., Babiuk, Lorne A.
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-04252006-105057/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0047 seconds