Ethanol can be used as a complete fuel or as an octane enhancer, and has the advantages of being renewable and environmentally friendly. Ethanol produced by a fermentation process, generally referred to as bioethanol, is considered to be a partial solution to the worldwide energy crisis. Traditionally, industrial bioethanol fermentation involves two major steps: starch hydrolysis and fermentation. Since the key microorganism, Saccharomyces cerevisiae, lacks amylolytic activity and is unable to directly utilize starch for proliferation and fermentation, it requires intensive amount of energy and pure starch hydrolyzing enzymes to gelatinize, liquefy and dextrinize the raw starch before fermentation.
It has been suggested that genetically engineered yeast which expresses amylolytic enzymes could potentially perform simultaneous starch hydrolysis and fermentation. This improvement could greatly reduce the capital and energy costs in current bioethanol producing plants and make bioethanol production more economical. In this project, a novel yeast strain of Saccharomyces cerevisiae was genetically engineered in such a way that barley alpha-amylase was constitutively expressed and immobilized on the yeast cell surface. This particular alpha-amylase was selected based on its superior kinetic properties and its pH optimum which is compatible with the pH of yeast culture media. The cDNA encoding barley Ñ-amylase, with a secretion signal sequence, was fused to the cDNA encoding the C-terminal half of a cell wall anchoring protein, alpha-agglutinin. The fusion gene was cloned downstream of a constitutive promoter ADH1 in a yeast episomal plasmid pAMY. The pAMY harbouring yeast showed detectable amylolytic activity in a starch plate assay. In addition, alpha-amylase activity was detected only in the cell pellet fraction and not in the culture supernatant. In batch fermentation studies using soluble wheat starch as sole carbon source, even though pAMY harbouring yeast was able to hydrolyse soluble starch under fermentation conditions, no ethanol was produced. This was probably due to insufficient alpha-amylase activity which resulted from the enzyme being anchored on the cell wall by alpha-agglutinin. Further research using alternative cell surface anchoring system might be able to produce yeast with industrial applications.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-07142008-154359 |
Date | 15 July 2008 |
Creators | Liao, Bo |
Contributors | Roesler, William J., Khandelwal, Ramji L., Hill, Gordon A., Gray, Gordon R., Bonham-Smith, Peta C., Warrington, Rob C. |
Publisher | University of Saskatchewan |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-07142008-154359/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0018 seconds