Return to search

Accelerated incremental listwise learning to rank for collaborative filtering

Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Ciência da Computação, Florianópolis, 2017. / Made available in DSpace on 2017-11-21T03:22:20Z (GMT). No. of bitstreams: 1
348587.pdf: 724704 bytes, checksum: b38ecdc2a6867c169d2e6b076ee4369e (MD5)
Previous issue date: 2017 / O enorme volume de informação hoje em dia aumenta a complexidade e degrada a qualidade do processo de tomada de decisão. A fim de melhorar a qualidade das decisões, os sistemas de recomendação têm sido utilizados com resultados consideráveis. Nesse contexto, a filtragem colaborativa desempenha um papel ativo em superar o problema de sobrecarga de informação. Em um cenário em que novas avaliações são recebidas constantemente, um modelo estático torna-se ultrapassado rapidamente, portanto a velocidade de atualização do modelo é um fator crítico. Propomos um método de aprendizagem de ranqueamento incremental acelerado para filtragem colaborativa. Para atingir esse objetivo, aplicamos uma técnica de aceleração a uma abordagem de aprendizado incremental para filtragem colaborativa. Resultados em conjuntos de dados reais confirmam que o algoritmo proposto é mais rápido no processo de aprendizagem mantendo a precisão do modelo. / Abstract : The enormous volume of information nowadays increases the complexity of the decision-making process and degrades the quality of decisions. In order to improve the quality of decisions, recommender systems have been applied with significant results. In this context, the collaborative filtering technique plays an active role overcoming the information overload problem. In a scenario where new ratings have been received constantly, a static model becomes outdated quickly, hence the rate of update of the model is a critical factor. We propose an accelerated incremental listwise learning to rank approach for collaborative filtering. To achieve this, we apply an acceleration technique to an incremental collaborative filtering approach. Results on real word datasets show that our proposal accelerates the learning process and keeps the accuracy of the model.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufsc.br:123456789/181254
Date January 2017
CreatorsBürgel, Eduardo Jorge da Rosa
ContributorsUniversidade Federal de Santa Catarina, Marchi, Jerusa, Spinosa, Eduardo Jaques
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format75 p.| il., gráfs., tabs.
Sourcereponame:Repositório Institucional da UFSC, instname:Universidade Federal de Santa Catarina, instacron:UFSC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds