High computing power and flexibility are important design factors for multimedia and wireless communication applications due to the demand for high quality services and frequent evolution of standards. The ASIC (Application Specific Integrated Circuit) approach provides an area efficient, high performance solution, but is inflexible. In contrast, the general purpose processor approach is flexible, but often fails to provide sufficient computing power. Reconfigurable architectures, which have been introduced as a compromise between the two extreme solutions, have been applied successfully for multimedia and wireless communication applications.
In this thesis, we investigated a new coarse-grained reconfigurable architecture called FleXilicon which is designed to execute critical loops efficiently, and is embedded in an SOC with a host processor. FleXilicon improves resource utilization and achieves a high degree of loop level parallelism (LLP). The proposed architecture aims to mitigate major shortcomings with existing architectures through adoption of three schemes, (i) wider memory bandwidth, (ii) adoption of a reconfigurable controller, and (iii) flexible wordlength support. Increased memory bandwidth satisfies memory access requirement in LLP execution. New design of reconfigurable controller minimizes overhead in reconfiguration and improves area efficiency and reconfiguration overhead. Flexible word-length support improves LLP by increasing the number of processing elements executable. The simulation results indicate that FleXilicon reduces the number of clock cycles and increases the speed for all five applications simulated. The speedup ratios compared with conventional architectures are as large as two orders of magnitude for some applications. VLSI implementation of FleXilicon in 65 nm CMOS process indicates that the proposed architecture can operate at a high frequency up to 1 GHz with moderate silicon area. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/77094 |
Date | 23 March 2010 |
Creators | Lee, Jong-Suk Mark |
Contributors | Electrical and Computer Engineering, Ha, Dong Sam, Lockhart, Thurmon E., Patterson, Cameron D., Reed, Jeffrey H., Schaumont, Patrick R. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Dissertation, Text |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0024 seconds