Return to search

Face recognition using infrared vision

Au cours de la dernière décennie, la reconnaissance de visage basée sur l’imagerie infrarouge (IR) et en particulier la thermographie IR est devenue une alternative prometteuse aux approches conventionnelles utilisant l’imagerie dans le spectre visible. En effet l’imagerie (visible et infrarouge) trouvent encore des contraintes à leur application efficace dans le monde réel. Bien qu’insensibles à toute variation d’illumination dans le spectre visible, les images IR sont caractérisées par des défis spécifiques qui leur sont propres, notamment la sensibilité aux facteurs qui affectent le rayonnement thermique du visage tels que l’état émotionnel, la température ambiante, la consommation d’alcool, etc. En outre, il est plus laborieux de corriger l’expression du visage et les changements de poses dans les images IR puisque leur contenu est moins riche aux hautes fréquences spatiales ce qui représente en fait une indication importante pour le calage de tout modèle déformable. Dans cette thèse, nous décrivons une nouvelle méthode qui répond à ces défis majeurs. Concrètement, pour remédier aux changements dans les poses et expressions du visage, nous générons une image synthétique frontale du visage qui est canonique et neutre vis-à-vis de toute expression faciale à partir d’une image du visage de pose et expression faciale arbitraires. Ceci est réalisé par l’application d’une déformation affine par morceaux précédée par un calage via un modèle d’apparence active (AAM). Ainsi, une de nos publications est la première publication qui explore l’utilisation d’un AAM sur les images IR thermiques ; nous y proposons une étape de prétraitement qui rehausse la netteté des images thermiques, ce qui rend la convergence de l’AAM rapide et plus précise. Pour surmonter le problème des images IR thermiques par rapport au motif exact du rayonnement thermique du visage, nous le décrivons celui-ci par une représentation s’appuyant sur des caractéristiques anatomiques fiables. Contrairement aux approches existantes, notre représentation n’est pas binaire ; elle met plutôt l’accent sur la fiabilité des caractéristiques extraites. Cela rend la représentation proposée beaucoup plus robuste à la fois à la pose et aux changements possibles de température. L’efficacité de l’approche proposée est démontrée sur la plus grande base de données publique des vidéos IR thermiques des visages. Sur cette base d’images, notre méthode atteint des performances de reconnaissance assez bonnes et surpasse de manière significative les méthodes décrites précédemment dans la littérature. L’approche proposée a également montré de très bonnes performances sur des sous-ensembles de cette base de données que nous avons montée nous-mêmes au sein de notre laboratoire. A notre connaissance, il s’agit de l’une des bases de données les plus importantes disponibles à l’heure actuelle tout en présentant certains défis. / Over the course of the last decade, infrared (IR) and particularly thermal IR imaging based face recognition has emerged as a promising complement to conventional, visible spectrum based approaches which continue to struggle when applied in the real world. While inherently insensitive to visible spectrum illumination changes, IR images introduce specific challenges of their own, most notably sensitivity to factors which affect facial heat emission patterns, e.g., emotional state, ambient temperature, etc. In addition, facial expression and pose changes are more difficult to correct in IR images because they are less rich in high frequency details which is an important cue for fitting any deformable model. In this thesis we describe a novel method which addresses these major challenges. Specifically, to normalize for pose and facial expression changes we generate a synthetic frontal image of a face in a canonical, neutral facial expression from an image of the face in an arbitrary pose and facial expression. This is achieved by piecewise affine warping which follows active appearance model (AAM) fitting. This is the first work which explores the use of an AAM on thermal IR images; we propose a pre-processing step which enhances details in thermal images, making AAM convergence faster and more accurate. To overcome the problem of thermal IR image sensitivity to the exact pattern of facial temperature emissions we describe a representation based on reliable anatomical features. In contrast to previous approaches, our representation is not binary; rather, our method accounts for the reliability of the extracted features. This makes the proposed representation much more robust both to pose and scale changes. The effectiveness of the proposed approach is demonstrated on the largest public database of thermal IR images of faces on which it achieves satisfying recognition performance and significantly outperforms previously described methods. The proposed approach has also demonstrated satisfying performance on subsets of the largest video database of the world gathered in our laboratory which will be publicly available free of charge in future. The reader should note that due to the very nature of the feature extraction method in our system (i.e., anatomical based nature of it), we anticipate high robustness of our system to some challenging factors such as the temperature changes. However, we were not able to investigate this in depth due to the limits which exist in gathering realistic databases. Gathering the largest video database considering some challenging factors is one of the other contributions of this research.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/25333
Date20 April 2018
CreatorsShoja Ghiass, Reza
ContributorsMaldague, Xavier, Bendada, Abdelhakim
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxix, 229 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0021 seconds