Return to search

Sentiment Analysis of YouTube Public Videos based on their Comments

With the rise of social media and publicly available data, opinion mining is more accessible than ever. It is valuable for content creators, companies and advertisers to gain insights into what users think and feel. This work examines comments on YouTube videos, and builds a deep learning classifier to automatically determine their sentiment. Four Long Short-Term Memory-based models are trained and evaluated. Experiments are performed to determine which deep learning model performs with the best accuracy, recall, precision, F1 score and ROC curve on a labelled YouTube Comment dataset. The results indicate that a BiLSTM-based model has the overall best performance, with the accuracy of 89%. Furthermore, the four LSTM-based models are evaluated on an IMDB movie review dataset, achieving an average accuracy of 87%, showing that the models can predict the sentiment of different textual data. Finally, a statistical analysis is performed on the YouTube videos, revealing that videos with positive sentiment have a statistically higher number of upvotes and views. However, the number of downvotes is not significantly higher in videos with negative sentiment.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-105754
Date January 2021
CreatorsKvedaraite, Indre
PublisherLinnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0015 seconds