Return to search

Deep learning pro doporučování založené na implicitní zpětné vazbě / Deep Learning For Implicit Feedback-based Recommender Systems

The research aims to focus on Recurrent Neural Networks (RNN) and its application to the session-aware recommendations empowered by implicit user feedback and content-based metadata. To investigate the promising architecture of RNN, we implement seven different models utilizing various types of implicit feedback and content information. Our results showed that using RNN with complex implicit feedback increases the next-item prediction comparing the baseline models like Cosine Similarity, Doc2Vec, and Item2Vec.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:435176
Date January 2020
CreatorsYöş, Kaan
ContributorsPeška, Ladislav, Balcar, Štěpán
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0018 seconds